File: plot_cv_indices.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (214 lines) | stat: -rw-r--r-- 6,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
Visualizing cross-validation behavior in scikit-learn
=====================================================

Choosing the right cross-validation object is a crucial part of fitting a
model properly. There are many ways to split data into training and test
sets in order to avoid model overfitting, to standardize the number of
groups in test sets, etc.

This example visualizes the behavior of several common scikit-learn objects
for comparison.

"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Patch

from sklearn.model_selection import (
    GroupKFold,
    GroupShuffleSplit,
    KFold,
    ShuffleSplit,
    StratifiedGroupKFold,
    StratifiedKFold,
    StratifiedShuffleSplit,
    TimeSeriesSplit,
)

rng = np.random.RandomState(1338)
cmap_data = plt.cm.Paired
cmap_cv = plt.cm.coolwarm
n_splits = 4

# %%
# Visualize our data
# ------------------
#
# First, we must understand the structure of our data. It has 100 randomly
# generated input datapoints, 3 classes split unevenly across datapoints,
# and 10 "groups" split evenly across datapoints.
#
# As we'll see, some cross-validation objects do specific things with
# labeled data, others behave differently with grouped data, and others
# do not use this information.
#
# To begin, we'll visualize our data.

# Generate the class/group data
n_points = 100
X = rng.randn(100, 10)

percentiles_classes = [0.1, 0.3, 0.6]
y = np.hstack([[ii] * int(100 * perc) for ii, perc in enumerate(percentiles_classes)])

# Generate uneven groups
group_prior = rng.dirichlet([2] * 10)
groups = np.repeat(np.arange(10), rng.multinomial(100, group_prior))


def visualize_groups(classes, groups, name):
    # Visualize dataset groups
    fig, ax = plt.subplots()
    ax.scatter(
        range(len(groups)),
        [0.5] * len(groups),
        c=groups,
        marker="_",
        lw=50,
        cmap=cmap_data,
    )
    ax.scatter(
        range(len(groups)),
        [3.5] * len(groups),
        c=classes,
        marker="_",
        lw=50,
        cmap=cmap_data,
    )
    ax.set(
        ylim=[-1, 5],
        yticks=[0.5, 3.5],
        yticklabels=["Data\ngroup", "Data\nclass"],
        xlabel="Sample index",
    )


visualize_groups(y, groups, "no groups")

# %%
# Define a function to visualize cross-validation behavior
# --------------------------------------------------------
#
# We'll define a function that lets us visualize the behavior of each
# cross-validation object. We'll perform 4 splits of the data. On each
# split, we'll visualize the indices chosen for the training set
# (in blue) and the test set (in red).


def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10):
    """Create a sample plot for indices of a cross-validation object."""

    # Generate the training/testing visualizations for each CV split
    for ii, (tr, tt) in enumerate(cv.split(X=X, y=y, groups=group)):
        # Fill in indices with the training/test groups
        indices = np.array([np.nan] * len(X))
        indices[tt] = 1
        indices[tr] = 0

        # Visualize the results
        ax.scatter(
            range(len(indices)),
            [ii + 0.5] * len(indices),
            c=indices,
            marker="_",
            lw=lw,
            cmap=cmap_cv,
            vmin=-0.2,
            vmax=1.2,
        )

    # Plot the data classes and groups at the end
    ax.scatter(
        range(len(X)), [ii + 1.5] * len(X), c=y, marker="_", lw=lw, cmap=cmap_data
    )

    ax.scatter(
        range(len(X)), [ii + 2.5] * len(X), c=group, marker="_", lw=lw, cmap=cmap_data
    )

    # Formatting
    yticklabels = list(range(n_splits)) + ["class", "group"]
    ax.set(
        yticks=np.arange(n_splits + 2) + 0.5,
        yticklabels=yticklabels,
        xlabel="Sample index",
        ylabel="CV iteration",
        ylim=[n_splits + 2.2, -0.2],
        xlim=[0, 100],
    )
    ax.set_title("{}".format(type(cv).__name__), fontsize=15)
    return ax


# %%
# Let's see how it looks for the :class:`~sklearn.model_selection.KFold`
# cross-validation object:

fig, ax = plt.subplots()
cv = KFold(n_splits)
plot_cv_indices(cv, X, y, groups, ax, n_splits)

# %%
# As you can see, by default the KFold cross-validation iterator does not
# take either datapoint class or group into consideration. We can change this
# by using either:
#
# - ``StratifiedKFold`` to preserve the percentage of samples for each class.
# - ``GroupKFold`` to ensure that the same group will not appear in two
#   different folds.
# - ``StratifiedGroupKFold`` to keep the constraint of ``GroupKFold`` while
#   attempting to return stratified folds.
cvs = [StratifiedKFold, GroupKFold, StratifiedGroupKFold]

for cv in cvs:
    fig, ax = plt.subplots(figsize=(6, 3))
    plot_cv_indices(cv(n_splits), X, y, groups, ax, n_splits)
    ax.legend(
        [Patch(color=cmap_cv(0.8)), Patch(color=cmap_cv(0.02))],
        ["Testing set", "Training set"],
        loc=(1.02, 0.8),
    )
    # Make the legend fit
    plt.tight_layout()
    fig.subplots_adjust(right=0.7)

# %%
# Next we'll visualize this behavior for a number of CV iterators.
#
# Visualize cross-validation indices for many CV objects
# ------------------------------------------------------
#
# Let's visually compare the cross validation behavior for many
# scikit-learn cross-validation objects. Below we will loop through several
# common cross-validation objects, visualizing the behavior of each.
#
# Note how some use the group/class information while others do not.

cvs = [
    KFold,
    GroupKFold,
    ShuffleSplit,
    StratifiedKFold,
    StratifiedGroupKFold,
    GroupShuffleSplit,
    StratifiedShuffleSplit,
    TimeSeriesSplit,
]


for cv in cvs:
    this_cv = cv(n_splits=n_splits)
    fig, ax = plt.subplots(figsize=(6, 3))
    plot_cv_indices(this_cv, X, y, groups, ax, n_splits)

    ax.legend(
        [Patch(color=cmap_cv(0.8)), Patch(color=cmap_cv(0.02))],
        ["Testing set", "Training set"],
        loc=(1.02, 0.8),
    )
    # Make the legend fit
    plt.tight_layout()
    fig.subplots_adjust(right=0.7)
plt.show()