1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
"""
===============================
Plot classification probability
===============================
This example illustrates the use of
:class:`sklearn.inspection.DecisionBoundaryDisplay` to plot the predicted class
probabilities of various classifiers in a 2D feature space, mostly for didactic
purposes.
The first three columns shows the predicted probability for varying values of
the two features. Round markers represent the test data that was predicted to
belong to that class.
In the last column, all three classes are represented on each plot; the class
with the highest predicted probability at each point is plotted. The round
markers show the test data and are colored by their true label.
"""
# %%
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib import cm
from sklearn import datasets
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
KBinsDiscretizer,
PolynomialFeatures,
SplineTransformer,
)
# %%
# Data: 2D projection of the iris dataset
# ---------------------------------------
iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=42
)
# %%
# Probabilistic classifiers
# -------------------------
#
# We will plot the decision boundaries of several classifiers that have a
# `predict_proba` method. This will allow us to visualize the uncertainty of
# the classifier in regions where it is not certain of its prediction.
classifiers = {
"Logistic regression\n(C=0.01)": LogisticRegression(C=0.1),
"Logistic regression\n(C=1)": LogisticRegression(C=100),
"Gaussian Process": GaussianProcessClassifier(kernel=1.0 * RBF([1.0, 1.0])),
"Logistic regression\n(RBF features)": make_pipeline(
Nystroem(kernel="rbf", gamma=5e-1, n_components=50, random_state=1),
LogisticRegression(C=10),
),
"Gradient Boosting": HistGradientBoostingClassifier(),
"Logistic regression\n(binned features)": make_pipeline(
KBinsDiscretizer(n_bins=5, quantile_method="averaged_inverted_cdf"),
PolynomialFeatures(interaction_only=True),
LogisticRegression(C=10),
),
"Logistic regression\n(spline features)": make_pipeline(
SplineTransformer(n_knots=5),
PolynomialFeatures(interaction_only=True),
LogisticRegression(C=10),
),
}
# %%
# Plotting the decision boundaries
# --------------------------------
#
# For each classifier, we plot the per-class probabilities on the first three
# columns and the probabilities of the most likely class on the last column.
n_classifiers = len(classifiers)
scatter_kwargs = {
"s": 25,
"marker": "o",
"linewidths": 0.8,
"edgecolor": "k",
"alpha": 0.7,
}
y_unique = np.unique(y)
# Ensure legend not cut off
mpl.rcParams["savefig.bbox"] = "tight"
fig, axes = plt.subplots(
nrows=n_classifiers,
ncols=len(iris.target_names) + 1,
figsize=(4 * 2.2, n_classifiers * 2.2),
)
evaluation_results = []
levels = 100
for classifier_idx, (name, classifier) in enumerate(classifiers.items()):
y_pred = classifier.fit(X_train, y_train).predict(X_test)
y_pred_proba = classifier.predict_proba(X_test)
accuracy_test = accuracy_score(y_test, y_pred)
roc_auc_test = roc_auc_score(y_test, y_pred_proba, multi_class="ovr")
log_loss_test = log_loss(y_test, y_pred_proba)
evaluation_results.append(
{
"name": name.replace("\n", " "),
"accuracy": accuracy_test,
"roc_auc": roc_auc_test,
"log_loss": log_loss_test,
}
)
for label in y_unique:
# plot the probability estimate provided by the classifier
disp = DecisionBoundaryDisplay.from_estimator(
classifier,
X_train,
response_method="predict_proba",
class_of_interest=label,
ax=axes[classifier_idx, label],
vmin=0,
vmax=1,
cmap="Blues",
levels=levels,
)
axes[classifier_idx, label].set_title(f"Class {label}")
# plot data predicted to belong to given class
mask_y_pred = y_pred == label
axes[classifier_idx, label].scatter(
X_test[mask_y_pred, 0], X_test[mask_y_pred, 1], c="w", **scatter_kwargs
)
axes[classifier_idx, label].set(xticks=(), yticks=())
# add column that shows all classes by plotting class with max 'predict_proba'
max_class_disp = DecisionBoundaryDisplay.from_estimator(
classifier,
X_train,
response_method="predict_proba",
class_of_interest=None,
ax=axes[classifier_idx, len(y_unique)],
vmin=0,
vmax=1,
levels=levels,
)
for label in y_unique:
mask_label = y_test == label
axes[classifier_idx, 3].scatter(
X_test[mask_label, 0],
X_test[mask_label, 1],
c=max_class_disp.multiclass_colors_[[label], :],
**scatter_kwargs,
)
axes[classifier_idx, 3].set(xticks=(), yticks=())
axes[classifier_idx, 3].set_title("Max class")
axes[classifier_idx, 0].set_ylabel(name)
# colorbar for single class plots
ax_single = fig.add_axes([0.15, 0.01, 0.5, 0.02])
plt.title("Probability")
_ = plt.colorbar(
cm.ScalarMappable(norm=None, cmap=disp.surface_.cmap),
cax=ax_single,
orientation="horizontal",
)
# colorbars for max probability class column
max_class_cmaps = [s.cmap for s in max_class_disp.surface_]
for label in y_unique:
ax_max = fig.add_axes([0.73, (0.06 - (label * 0.04)), 0.16, 0.015])
plt.title(f"Probability class {label}", fontsize=10)
_ = plt.colorbar(
cm.ScalarMappable(norm=None, cmap=max_class_cmaps[label]),
cax=ax_max,
orientation="horizontal",
)
if label in (0, 1):
ax_max.set(xticks=(), yticks=())
# %%
# Quantitative evaluation
# -----------------------
pd.DataFrame(evaluation_results).round(2)
# %%
# Analysis
# --------
#
# The two logistic regression models fitted on the original features display
# linear decision boundaries as expected. For this particular problem, this
# does not seem to be detrimental as both models are competitive with the
# non-linear models when quantitatively evaluated on the test set. We can
# observe that the amount of regularization influences the model confidence:
# lighter colors for the strongly regularized model with a lower value of `C`.
# Regularization also impacts the orientation of decision boundary leading to
# slightly different ROC AUC.
#
# The log-loss on the other hand evaluates both sharpness and calibration and
# as a result strongly favors the weakly regularized logistic-regression model,
# probably because the strongly regularized model is under-confident. This
# could be confirmed by looking at the calibration curve using
# :class:`sklearn.calibration.CalibrationDisplay`.
#
# The logistic regression model with RBF features has a "blobby" decision
# boundary that is non-linear in the original feature space and is quite
# similar to the decision boundary of the Gaussian process classifier which is
# configured to use an RBF kernel.
#
# The logistic regression model fitted on binned features with interactions has
# a decision boundary that is non-linear in the original feature space and is
# quite similar to the decision boundary of the gradient boosting classifier:
# both models favor axis-aligned decisions when extrapolating to unseen region
# of the feature space.
#
# The logistic regression model fitted on spline features with interactions
# has a similar axis-aligned extrapolation behavior but a smoother decision
# boundary in the dense region of the feature space than the two previous
# models.
#
# To conclude, it is interesting to observe that feature engineering for
# logistic regression models can be used to mimic some of the inductive bias of
# various non-linear models. However, for this particular dataset, using the
# raw features is enough to train a competitive model. This would not
# necessarily the case for other datasets.
|