File: plot_mds.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 25,748 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 189; javascript: 110
file content (129 lines) | stat: -rw-r--r-- 3,471 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
=========================
Multi-dimensional scaling
=========================

An illustration of the metric and non-metric MDS on generated noisy data.

"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# %%
# Dataset preparation
# -------------------
#
# We start by uniformly generating 20 points in a 2D space.

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection

from sklearn import manifold
from sklearn.decomposition import PCA
from sklearn.metrics import euclidean_distances

# Generate the data
EPSILON = np.finfo(np.float32).eps
n_samples = 20
rng = np.random.RandomState(seed=3)
X_true = rng.randint(0, 20, 2 * n_samples).astype(float)
X_true = X_true.reshape((n_samples, 2))

# Center the data
X_true -= X_true.mean()

# %%
# Now we compute pairwise distances between all points and add
# a small amount of noise to the distance matrix. We make sure
# to keep the noisy distance matrix symmetric.

# Compute pairwise Euclidean distances
distances = euclidean_distances(X_true)

# Add noise to the distances
noise = rng.rand(n_samples, n_samples)
noise = noise + noise.T
np.fill_diagonal(noise, 0)
distances += noise

# %%
# Here we compute metric and non-metric MDS of the noisy distance matrix.

mds = manifold.MDS(
    n_components=2,
    max_iter=3000,
    eps=1e-9,
    n_init=1,
    random_state=42,
    dissimilarity="precomputed",
    n_jobs=1,
)
X_mds = mds.fit(distances).embedding_

nmds = manifold.MDS(
    n_components=2,
    metric=False,
    max_iter=3000,
    eps=1e-12,
    dissimilarity="precomputed",
    random_state=42,
    n_jobs=1,
    n_init=1,
)
X_nmds = nmds.fit_transform(distances)

# %%
# Rescaling the non-metric MDS solution to match the spread of the original data.

X_nmds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_nmds**2).sum())

# %%
# To make the visual comparisons easier, we rotate the original data and both MDS
# solutions to their PCA axes. And flip horizontal and vertical MDS axes, if needed,
# to match the original data orientation.

# Rotate the data
pca = PCA(n_components=2)
X_true = pca.fit_transform(X_true)
X_mds = pca.fit_transform(X_mds)
X_nmds = pca.fit_transform(X_nmds)

# Align the sign of PCs
for i in [0, 1]:
    if np.corrcoef(X_mds[:, i], X_true[:, i])[0, 1] < 0:
        X_mds[:, i] *= -1
    if np.corrcoef(X_nmds[:, i], X_true[:, i])[0, 1] < 0:
        X_nmds[:, i] *= -1

# %%
# Finally, we plot the original data and both MDS reconstructions.

fig = plt.figure(1)
ax = plt.axes([0.0, 0.0, 1.0, 1.0])

s = 100
plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position")
plt.scatter(X_mds[:, 0], X_mds[:, 1], color="turquoise", s=s, lw=0, label="MDS")
plt.scatter(X_nmds[:, 0], X_nmds[:, 1], color="darkorange", s=s, lw=0, label="NMDS")
plt.legend(scatterpoints=1, loc="best", shadow=False)

# Plot the edges
start_idx, end_idx = X_mds.nonzero()
# a sequence of (*line0*, *line1*, *line2*), where::
#            linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [
    [X_true[i, :], X_true[j, :]] for i in range(len(X_true)) for j in range(len(X_true))
]
edges = distances.max() / (distances + EPSILON) * 100
np.fill_diagonal(edges, 0)
edges = np.abs(edges)
lc = LineCollection(
    segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, edges.max())
)
lc.set_array(edges.flatten())
lc.set_linewidths(np.full(len(segments), 0.5))
ax.add_collection(lc)

plt.show()