File: plot_target_encoder.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 25,748 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 189; javascript: 110
file content (228 lines) | stat: -rw-r--r-- 8,175 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
============================================
Comparing Target Encoder with Other Encoders
============================================

.. currentmodule:: sklearn.preprocessing

The :class:`TargetEncoder` uses the value of the target to encode each
categorical feature. In this example, we will compare three different approaches
for handling categorical features: :class:`TargetEncoder`,
:class:`OrdinalEncoder`, :class:`OneHotEncoder` and dropping the category.

.. note::
    `fit(X, y).transform(X)` does not equal `fit_transform(X, y)` because a
    cross fitting scheme is used in `fit_transform` for encoding. See the
    :ref:`User Guide <target_encoder>`. for details.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# %%
# Loading Data from OpenML
# ========================
# First, we load the wine reviews dataset, where the target is the points given
# be a reviewer:
from sklearn.datasets import fetch_openml

wine_reviews = fetch_openml(data_id=42074, as_frame=True)

df = wine_reviews.frame
df.head()

# %%
# For this example, we use the following subset of numerical and categorical
# features in the data. The target are continuous values from 80 to 100:
numerical_features = ["price"]
categorical_features = [
    "country",
    "province",
    "region_1",
    "region_2",
    "variety",
    "winery",
]
target_name = "points"

X = df[numerical_features + categorical_features]
y = df[target_name]

_ = y.hist()

# %%
# Training and Evaluating Pipelines with Different Encoders
# =========================================================
# In this section, we will evaluate pipelines with
# :class:`~sklearn.ensemble.HistGradientBoostingRegressor` with different encoding
# strategies. First, we list out the encoders we will be using to preprocess
# the categorical features:
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, TargetEncoder

categorical_preprocessors = [
    ("drop", "drop"),
    ("ordinal", OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1)),
    (
        "one_hot",
        OneHotEncoder(handle_unknown="ignore", max_categories=20, sparse_output=False),
    ),
    ("target", TargetEncoder(target_type="continuous")),
]

# %%
# Next, we evaluate the models using cross validation and record the results:
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.model_selection import cross_validate
from sklearn.pipeline import make_pipeline

n_cv_folds = 3
max_iter = 20
results = []


def evaluate_model_and_store(name, pipe):
    result = cross_validate(
        pipe,
        X,
        y,
        scoring="neg_root_mean_squared_error",
        cv=n_cv_folds,
        return_train_score=True,
    )
    rmse_test_score = -result["test_score"]
    rmse_train_score = -result["train_score"]
    results.append(
        {
            "preprocessor": name,
            "rmse_test_mean": rmse_test_score.mean(),
            "rmse_test_std": rmse_train_score.std(),
            "rmse_train_mean": rmse_train_score.mean(),
            "rmse_train_std": rmse_train_score.std(),
        }
    )


for name, categorical_preprocessor in categorical_preprocessors:
    preprocessor = ColumnTransformer(
        [
            ("numerical", "passthrough", numerical_features),
            ("categorical", categorical_preprocessor, categorical_features),
        ]
    )
    pipe = make_pipeline(
        preprocessor, HistGradientBoostingRegressor(random_state=0, max_iter=max_iter)
    )
    evaluate_model_and_store(name, pipe)


# %%
# Native Categorical Feature Support
# ==================================
# In this section, we build and evaluate a pipeline that uses native categorical
# feature support in :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
# which only supports up to 255 unique categories. In our dataset, the most of
# the categorical features have more than 255 unique categories:
n_unique_categories = df[categorical_features].nunique().sort_values(ascending=False)
n_unique_categories

# %%
# To workaround the limitation above, we group the categorical features into
# low cardinality and high cardinality features. The high cardinality features
# will be target encoded and the low cardinality features will use the native
# categorical feature in gradient boosting.
high_cardinality_features = n_unique_categories[n_unique_categories > 255].index
low_cardinality_features = n_unique_categories[n_unique_categories <= 255].index
mixed_encoded_preprocessor = ColumnTransformer(
    [
        ("numerical", "passthrough", numerical_features),
        (
            "high_cardinality",
            TargetEncoder(target_type="continuous"),
            high_cardinality_features,
        ),
        (
            "low_cardinality",
            OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1),
            low_cardinality_features,
        ),
    ],
    verbose_feature_names_out=False,
)

# The output of the of the preprocessor must be set to pandas so the
# gradient boosting model can detect the low cardinality features.
mixed_encoded_preprocessor.set_output(transform="pandas")
mixed_pipe = make_pipeline(
    mixed_encoded_preprocessor,
    HistGradientBoostingRegressor(
        random_state=0, max_iter=max_iter, categorical_features=low_cardinality_features
    ),
)
mixed_pipe

# %%
# Finally, we evaluate the pipeline using cross validation and record the results:
evaluate_model_and_store("mixed_target", mixed_pipe)

# %%
# Plotting the Results
# ====================
# In this section, we display the results by plotting the test and train scores:
import matplotlib.pyplot as plt
import pandas as pd

results_df = (
    pd.DataFrame(results).set_index("preprocessor").sort_values("rmse_test_mean")
)

fig, (ax1, ax2) = plt.subplots(
    1, 2, figsize=(12, 8), sharey=True, constrained_layout=True
)
xticks = range(len(results_df))
name_to_color = dict(
    zip((r["preprocessor"] for r in results), ["C0", "C1", "C2", "C3", "C4"])
)

for subset, ax in zip(["test", "train"], [ax1, ax2]):
    mean, std = f"rmse_{subset}_mean", f"rmse_{subset}_std"
    data = results_df[[mean, std]].sort_values(mean)
    ax.bar(
        x=xticks,
        height=data[mean],
        yerr=data[std],
        width=0.9,
        color=[name_to_color[name] for name in data.index],
    )
    ax.set(
        title=f"RMSE ({subset.title()})",
        xlabel="Encoding Scheme",
        xticks=xticks,
        xticklabels=data.index,
    )

# %%
# When evaluating the predictive performance on the test set, dropping the
# categories perform the worst and the target encoders performs the best. This
# can be explained as follows:
#
# - Dropping the categorical features makes the pipeline less expressive and
#   underfitting as a result;
# - Due to the high cardinality and to reduce the training time, the one-hot
#   encoding scheme uses `max_categories=20` which prevents the features from
#   expanding too much, which can result in underfitting.
# - If we had not set `max_categories=20`, the one-hot encoding scheme would have
#   likely made the pipeline overfitting as the number of features explodes with rare
#   category occurrences that are correlated with the target by chance (on the training
#   set only);
# - The ordinal encoding imposes an arbitrary order to the features which are then
#   treated as numerical values by the
#   :class:`~sklearn.ensemble.HistGradientBoostingRegressor`. Since this
#   model groups numerical features in 256 bins per feature, many unrelated categories
#   can be grouped together and as a result overall pipeline can underfit;
# - When using the target encoder, the same binning happens, but since the encoded
#   values are statistically ordered by marginal association with the target variable,
#   the binning use by the :class:`~sklearn.ensemble.HistGradientBoostingRegressor`
#   makes sense and leads to good results: the combination of smoothed target
#   encoding and binning works as a good regularizing strategy against
#   overfitting while not limiting the expressiveness of the pipeline too much.