1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
"""
=================================
Combine predictors using stacking
=================================
.. currentmodule:: sklearn
Stacking refers to a method to blend estimators. In this strategy, some
estimators are individually fitted on some training data while a final
estimator is trained using the stacked predictions of these base estimators.
In this example, we illustrate the use case in which different regressors are
stacked together and a final linear penalized regressor is used to output the
prediction. We compare the performance of each individual regressor with the
stacking strategy. Stacking slightly improves the overall performance.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
# %%
# Download the dataset
# ####################
#
# We will use the `Ames Housing`_ dataset which was first compiled by Dean De Cock
# and became better known after it was used in Kaggle challenge. It is a set
# of 1460 residential homes in Ames, Iowa, each described by 80 features. We
# will use it to predict the final logarithmic price of the houses. In this
# example we will use only 20 most interesting features chosen using
# GradientBoostingRegressor() and limit number of entries (here we won't go
# into the details on how to select the most interesting features).
#
# The Ames housing dataset is not shipped with scikit-learn and therefore we
# will fetch it from `OpenML`_.
#
# .. _`Ames Housing`: http://jse.amstat.org/v19n3/decock.pdf
# .. _`OpenML`: https://www.openml.org/d/42165
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle
def load_ames_housing():
df = fetch_openml(name="house_prices", as_frame=True)
X = df.data
y = df.target
features = [
"YrSold",
"HeatingQC",
"Street",
"YearRemodAdd",
"Heating",
"MasVnrType",
"BsmtUnfSF",
"Foundation",
"MasVnrArea",
"MSSubClass",
"ExterQual",
"Condition2",
"GarageCars",
"GarageType",
"OverallQual",
"TotalBsmtSF",
"BsmtFinSF1",
"HouseStyle",
"MiscFeature",
"MoSold",
]
X = X.loc[:, features]
X, y = shuffle(X, y, random_state=0)
X = X.iloc[:600]
y = y.iloc[:600]
return X, np.log(y)
X, y = load_ames_housing()
# %%
# Make pipeline to preprocess the data
# ####################################
#
# Before we can use Ames dataset we still need to do some preprocessing.
# First, we will select the categorical and numerical columns of the dataset to
# construct the first step of the pipeline.
from sklearn.compose import make_column_selector
cat_selector = make_column_selector(dtype_include=object)
num_selector = make_column_selector(dtype_include=np.number)
cat_selector(X)
# %%
num_selector(X)
# %%
# Then, we will need to design preprocessing pipelines which depends on the
# ending regressor. If the ending regressor is a linear model, one needs to
# one-hot encode the categories. If the ending regressor is a tree-based model
# an ordinal encoder will be sufficient. Besides, numerical values need to be
# standardized for a linear model while the raw numerical data can be treated
# as is by a tree-based model. However, both models need an imputer to
# handle missing values.
#
# We will first design the pipeline required for the tree-based models.
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OrdinalEncoder
cat_tree_processor = OrdinalEncoder(
handle_unknown="use_encoded_value",
unknown_value=-1,
encoded_missing_value=-2,
)
num_tree_processor = SimpleImputer(strategy="mean", add_indicator=True)
tree_preprocessor = make_column_transformer(
(num_tree_processor, num_selector), (cat_tree_processor, cat_selector)
)
tree_preprocessor
# %%
# Then, we will now define the preprocessor used when the ending regressor
# is a linear model.
from sklearn.preprocessing import OneHotEncoder, StandardScaler
cat_linear_processor = OneHotEncoder(handle_unknown="ignore")
num_linear_processor = make_pipeline(
StandardScaler(), SimpleImputer(strategy="mean", add_indicator=True)
)
linear_preprocessor = make_column_transformer(
(num_linear_processor, num_selector), (cat_linear_processor, cat_selector)
)
linear_preprocessor
# %%
# Stack of predictors on a single data set
# ########################################
#
# It is sometimes tedious to find the model which will best perform on a given
# dataset. Stacking provide an alternative by combining the outputs of several
# learners, without the need to choose a model specifically. The performance of
# stacking is usually close to the best model and sometimes it can outperform
# the prediction performance of each individual model.
#
# Here, we combine 3 learners (linear and non-linear) and use a ridge regressor
# to combine their outputs together.
#
# .. note::
# Although we will make new pipelines with the processors which we wrote in
# the previous section for the 3 learners, the final estimator
# :class:`~sklearn.linear_model.RidgeCV()` does not need preprocessing of
# the data as it will be fed with the already preprocessed output from the 3
# learners.
from sklearn.linear_model import LassoCV
lasso_pipeline = make_pipeline(linear_preprocessor, LassoCV())
lasso_pipeline
# %%
from sklearn.ensemble import RandomForestRegressor
rf_pipeline = make_pipeline(tree_preprocessor, RandomForestRegressor(random_state=42))
rf_pipeline
# %%
from sklearn.ensemble import HistGradientBoostingRegressor
gbdt_pipeline = make_pipeline(
tree_preprocessor, HistGradientBoostingRegressor(random_state=0)
)
gbdt_pipeline
# %%
from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import RidgeCV
estimators = [
("Random Forest", rf_pipeline),
("Lasso", lasso_pipeline),
("Gradient Boosting", gbdt_pipeline),
]
stacking_regressor = StackingRegressor(estimators=estimators, final_estimator=RidgeCV())
stacking_regressor
# %%
# Measure and plot the results
# ############################
#
# Now we can use Ames Housing dataset to make the predictions. We check the
# performance of each individual predictor as well as of the stack of the
# regressors.
import time
import matplotlib.pyplot as plt
from sklearn.metrics import PredictionErrorDisplay
from sklearn.model_selection import cross_val_predict, cross_validate
fig, axs = plt.subplots(2, 2, figsize=(9, 7))
axs = np.ravel(axs)
for ax, (name, est) in zip(
axs, estimators + [("Stacking Regressor", stacking_regressor)]
):
scorers = {"R2": "r2", "MAE": "neg_mean_absolute_error"}
start_time = time.time()
scores = cross_validate(
est, X, y, scoring=list(scorers.values()), n_jobs=-1, verbose=0
)
elapsed_time = time.time() - start_time
y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)
scores = {
key: (
f"{np.abs(np.mean(scores[f'test_{value}'])):.2f} +- "
f"{np.std(scores[f'test_{value}']):.2f}"
)
for key, value in scorers.items()
}
display = PredictionErrorDisplay.from_predictions(
y_true=y,
y_pred=y_pred,
kind="actual_vs_predicted",
ax=ax,
scatter_kwargs={"alpha": 0.2, "color": "tab:blue"},
line_kwargs={"color": "tab:red"},
)
ax.set_title(f"{name}\nEvaluation in {elapsed_time:.2f} seconds")
for name, score in scores.items():
ax.plot([], [], " ", label=f"{name}: {score}")
ax.legend(loc="upper left")
plt.suptitle("Single predictors versus stacked predictors")
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.show()
# %%
# The stacked regressor will combine the strengths of the different regressors.
# However, we also see that training the stacked regressor is much more
# computationally expensive.
|