File: plot_unveil_tree_structure.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (237 lines) | stat: -rw-r--r-- 9,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
=========================================
Understanding the decision tree structure
=========================================

The decision tree structure can be analysed to gain further insight on the
relation between the features and the target to predict. In this example, we
show how to retrieve:

- the binary tree structure;
- the depth of each node and whether or not it's a leaf;
- the nodes that were reached by a sample using the ``decision_path`` method;
- the leaf that was reached by a sample using the apply method;
- the rules that were used to predict a sample;
- the decision path shared by a group of samples.

"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn import tree
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

##############################################################################
# Train tree classifier
# ---------------------
# First, we fit a :class:`~sklearn.tree.DecisionTreeClassifier` using the
# :func:`~sklearn.datasets.load_iris` dataset.

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

clf = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
clf.fit(X_train, y_train)

##############################################################################
# Tree structure
# --------------
#
# The decision classifier has an attribute called ``tree_`` which allows access
# to low level attributes such as ``node_count``, the total number of nodes,
# and ``max_depth``, the maximal depth of the tree. The
# ``tree_.compute_node_depths()`` method computes the depth of each node in the
# tree. `tree_` also stores the entire binary tree structure, represented as a
# number of parallel arrays. The i-th element of each array holds information
# about the node ``i``. Node 0 is the tree's root. Some of the arrays only
# apply to either leaves or split nodes. In this case the values of the nodes
# of the other type is arbitrary. For example, the arrays ``feature`` and
# ``threshold`` only apply to split nodes. The values for leaf nodes in these
# arrays are therefore arbitrary.
#
# Among these arrays, we have:
#
# - ``children_left[i]``: id of the left child of node ``i`` or -1 if leaf node
# - ``children_right[i]``: id of the right child of node ``i`` or -1 if leaf node
# - ``feature[i]``: feature used for splitting node ``i``
# - ``threshold[i]``: threshold value at node ``i``
# - ``n_node_samples[i]``: the number of training samples reaching node ``i``
# - ``impurity[i]``: the impurity at node ``i``
# - ``weighted_n_node_samples[i]``: the weighted number of training samples
#   reaching node ``i``
# - ``value[i, j, k]``: the summary of the training samples that reached node i for
#   output j and class k (for regression tree, class is set to 1). See below
#   for more information about ``value``.
#
# Using the arrays, we can traverse the tree structure to compute various
# properties. Below, we will compute the depth of each node and whether or not
# it is a leaf.

n_nodes = clf.tree_.node_count
children_left = clf.tree_.children_left
children_right = clf.tree_.children_right
feature = clf.tree_.feature
threshold = clf.tree_.threshold
values = clf.tree_.value

node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
is_leaves = np.zeros(shape=n_nodes, dtype=bool)
stack = [(0, 0)]  # start with the root node id (0) and its depth (0)
while len(stack) > 0:
    # `pop` ensures each node is only visited once
    node_id, depth = stack.pop()
    node_depth[node_id] = depth

    # If the left and right child of a node is not the same we have a split
    # node
    is_split_node = children_left[node_id] != children_right[node_id]
    # If a split node, append left and right children and depth to `stack`
    # so we can loop through them
    if is_split_node:
        stack.append((children_left[node_id], depth + 1))
        stack.append((children_right[node_id], depth + 1))
    else:
        is_leaves[node_id] = True

print(
    "The binary tree structure has {n} nodes and has "
    "the following tree structure:\n".format(n=n_nodes)
)
for i in range(n_nodes):
    if is_leaves[i]:
        print(
            "{space}node={node} is a leaf node with value={value}.".format(
                space=node_depth[i] * "\t", node=i, value=np.around(values[i], 3)
            )
        )
    else:
        print(
            "{space}node={node} is a split node with value={value}: "
            "go to node {left} if X[:, {feature}] <= {threshold} "
            "else to node {right}.".format(
                space=node_depth[i] * "\t",
                node=i,
                left=children_left[i],
                feature=feature[i],
                threshold=threshold[i],
                right=children_right[i],
                value=np.around(values[i], 3),
            )
        )

# %%
# What is the values array used here?
# -----------------------------------
# The `tree_.value` array is a 3D array of shape
# [``n_nodes``, ``n_classes``, ``n_outputs``] which provides the proportion of samples
# reaching a node for each class and for each output.
# Each node has a ``value`` array which is the proportion of weighted samples reaching
# this node for each output and class with respect to the parent node.
#
# One could convert this to the absolute weighted number of samples reaching a node,
# by multiplying this number by `tree_.weighted_n_node_samples[node_idx]` for the
# given node. Note sample weights are not used in this example, so the weighted
# number of samples is the number of samples reaching the node because each sample
# has a weight of 1 by default.
#
# For example, in the above tree built on the iris dataset, the root node has
# ``value = [0.33, 0.304, 0.366]`` indicating there are 33% of class 0 samples,
# 30.4% of class 1 samples, and 36.6% of class 2 samples at the root node. One can
# convert this to the absolute number of samples by multiplying by the number of
# samples reaching the root node, which is `tree_.weighted_n_node_samples[0]`.
# Then the root node has ``value = [37, 34, 41]``, indicating there are 37 samples
# of class 0, 34 samples of class 1, and 41 samples of class 2 at the root node.
#
# Traversing the tree, the samples are split and as a result, the ``value`` array
# reaching each node changes. The left child of the root node has ``value = [1., 0, 0]``
# (or ``value = [37, 0, 0]`` when converted to the absolute number of samples)
# because all 37 samples in the left child node are from class 0.
#
# Note: In this example, `n_outputs=1`, but the tree classifier can also handle
# multi-output problems. The `value` array at each node would just be a 2D
# array instead.

##############################################################################
# We can compare the above output to the plot of the decision tree.
# Here, we show the proportions of samples of each class that reach each
# node corresponding to the actual elements of `tree_.value` array.

tree.plot_tree(clf, proportion=True)
plt.show()

##############################################################################
# Decision path
# -------------
#
# We can also retrieve the decision path of samples of interest. The
# ``decision_path`` method outputs an indicator matrix that allows us to
# retrieve the nodes the samples of interest traverse through. A non zero
# element in the indicator matrix at position ``(i, j)`` indicates that
# the sample ``i`` goes through the node ``j``. Or, for one sample ``i``, the
# positions of the non zero elements in row ``i`` of the indicator matrix
# designate the ids of the nodes that sample goes through.
#
# The leaf ids reached by samples of interest can be obtained with the
# ``apply`` method. This returns an array of the node ids of the leaves
# reached by each sample of interest. Using the leaf ids and the
# ``decision_path`` we can obtain the splitting conditions that were used to
# predict a sample or a group of samples. First, let's do it for one sample.
# Note that ``node_index`` is a sparse matrix.

node_indicator = clf.decision_path(X_test)
leaf_id = clf.apply(X_test)

sample_id = 0
# obtain ids of the nodes `sample_id` goes through, i.e., row `sample_id`
node_index = node_indicator.indices[
    node_indicator.indptr[sample_id] : node_indicator.indptr[sample_id + 1]
]

print("Rules used to predict sample {id}:\n".format(id=sample_id))
for node_id in node_index:
    # continue to the next node if it is a leaf node
    if leaf_id[sample_id] == node_id:
        continue

    # check if value of the split feature for sample 0 is below threshold
    if X_test[sample_id, feature[node_id]] <= threshold[node_id]:
        threshold_sign = "<="
    else:
        threshold_sign = ">"

    print(
        "decision node {node} : (X_test[{sample}, {feature}] = {value}) "
        "{inequality} {threshold})".format(
            node=node_id,
            sample=sample_id,
            feature=feature[node_id],
            value=X_test[sample_id, feature[node_id]],
            inequality=threshold_sign,
            threshold=threshold[node_id],
        )
    )

##############################################################################
# For a group of samples, we can determine the common nodes the samples go
# through.

sample_ids = [0, 1]
# boolean array indicating the nodes both samples go through
common_nodes = node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)
# obtain node ids using position in array
common_node_id = np.arange(n_nodes)[common_nodes]

print(
    "\nThe following samples {samples} share the node(s) {nodes} in the tree.".format(
        samples=sample_ids, nodes=common_node_id
    )
)
print("This is {prop}% of all nodes.".format(prop=100 * len(common_node_id) / n_nodes))