1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numpy as np
from cython cimport floating
from cython.parallel cimport prange
from libc.math cimport sqrt
from ..utils.extmath import row_norms
# Number of samples per data chunk defined as a global constant.
CHUNK_SIZE = 256
cdef floating _euclidean_dense_dense(
const floating* a, # IN
const floating* b, # IN
int n_features,
bint squared
) noexcept nogil:
"""Euclidean distance between a dense and b dense"""
cdef:
int i
int n = n_features // 4
int rem = n_features % 4
floating result = 0
# We manually unroll the loop for better cache optimization.
for i in range(n):
result += (
(a[0] - b[0]) * (a[0] - b[0]) +
(a[1] - b[1]) * (a[1] - b[1]) +
(a[2] - b[2]) * (a[2] - b[2]) +
(a[3] - b[3]) * (a[3] - b[3])
)
a += 4
b += 4
for i in range(rem):
result += (a[i] - b[i]) * (a[i] - b[i])
return result if squared else sqrt(result)
def _euclidean_dense_dense_wrapper(
const floating[::1] a,
const floating[::1] b,
bint squared
):
"""Wrapper of _euclidean_dense_dense for testing purpose"""
return _euclidean_dense_dense(&a[0], &b[0], a.shape[0], squared)
cdef floating _euclidean_sparse_dense(
const floating[::1] a_data, # IN
const int[::1] a_indices, # IN
const floating[::1] b, # IN
floating b_squared_norm,
bint squared
) noexcept nogil:
"""Euclidean distance between a sparse and b dense"""
cdef:
int nnz = a_indices.shape[0]
int i
floating tmp, bi
floating result = 0.0
for i in range(nnz):
bi = b[a_indices[i]]
tmp = a_data[i] - bi
result += tmp * tmp - bi * bi
result += b_squared_norm
if result < 0:
result = 0.0
return result if squared else sqrt(result)
def _euclidean_sparse_dense_wrapper(
const floating[::1] a_data,
const int[::1] a_indices,
const floating[::1] b,
floating b_squared_norm,
bint squared
):
"""Wrapper of _euclidean_sparse_dense for testing purpose"""
return _euclidean_sparse_dense(
a_data, a_indices, b, b_squared_norm, squared)
cpdef floating _inertia_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers, # IN
const int[::1] labels, # IN
int n_threads,
int single_label=-1,
):
"""Compute inertia for dense input data
Sum of squared distance between each sample and its assigned center.
If single_label is >= 0, the inertia is computed only for that label.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int i, j
floating sq_dist = 0.0
floating inertia = 0.0
for i in prange(n_samples, nogil=True, num_threads=n_threads,
schedule='static'):
j = labels[i]
if single_label < 0 or single_label == j:
sq_dist = _euclidean_dense_dense(&X[i, 0], ¢ers[j, 0],
n_features, True)
inertia += sq_dist * sample_weight[i]
return inertia
cpdef floating _inertia_sparse(
X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers, # IN
const int[::1] labels, # IN
int n_threads,
int single_label=-1,
):
"""Compute inertia for sparse input data
Sum of squared distance between each sample and its assigned center.
If single_label is >= 0, the inertia is computed only for that label.
"""
cdef:
floating[::1] X_data = X.data
int[::1] X_indices = X.indices
int[::1] X_indptr = X.indptr
int n_samples = X.shape[0]
int i, j
floating sq_dist = 0.0
floating inertia = 0.0
floating[::1] centers_squared_norms = row_norms(centers, squared=True)
for i in prange(n_samples, nogil=True, num_threads=n_threads,
schedule='static'):
j = labels[i]
if single_label < 0 or single_label == j:
sq_dist = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers[j], centers_squared_norms[j], True)
inertia += sq_dist * sample_weight[i]
return inertia
cpdef void _relocate_empty_clusters_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # INOUT
floating[::1] weight_in_clusters, # INOUT
const int[::1] labels # IN
):
"""Relocate centers which have no sample assigned to them."""
cdef:
int[::1] empty_clusters = np.where(np.equal(weight_in_clusters, 0))[0].astype(np.int32)
int n_empty = empty_clusters.shape[0]
if n_empty == 0:
return
cdef:
int n_features = X.shape[1]
floating[::1] distances = ((np.asarray(X) - np.asarray(centers_old)[labels])**2).sum(axis=1)
int[::1] far_from_centers = np.argpartition(distances, -n_empty)[:-n_empty-1:-1].astype(np.int32)
int new_cluster_id, old_cluster_id, far_idx, idx, k
floating weight
if np.max(distances) == 0:
# Happens when there are more clusters than non-duplicate samples. Relocating
# is pointless in this case.
return
for idx in range(n_empty):
new_cluster_id = empty_clusters[idx]
far_idx = far_from_centers[idx]
weight = sample_weight[far_idx]
old_cluster_id = labels[far_idx]
for k in range(n_features):
centers_new[old_cluster_id, k] -= X[far_idx, k] * weight
centers_new[new_cluster_id, k] = X[far_idx, k] * weight
weight_in_clusters[new_cluster_id] = weight
weight_in_clusters[old_cluster_id] -= weight
cpdef void _relocate_empty_clusters_sparse(
const floating[::1] X_data, # IN
const int[::1] X_indices, # IN
const int[::1] X_indptr, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # INOUT
floating[::1] weight_in_clusters, # INOUT
const int[::1] labels # IN
):
"""Relocate centers which have no sample assigned to them."""
cdef:
int[::1] empty_clusters = np.where(np.equal(weight_in_clusters, 0))[0].astype(np.int32)
int n_empty = empty_clusters.shape[0]
if n_empty == 0:
return
cdef:
int n_samples = X_indptr.shape[0] - 1
int i, j, k
floating[::1] distances = np.zeros(n_samples, dtype=X_data.base.dtype)
floating[::1] centers_squared_norms = row_norms(centers_old, squared=True)
for i in range(n_samples):
j = labels[i]
distances[i] = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers_old[j], centers_squared_norms[j], True)
if np.max(distances) == 0:
# Happens when there are more clusters than non-duplicate samples. Relocating
# is pointless in this case.
return
cdef:
int[::1] far_from_centers = np.argpartition(distances, -n_empty)[:-n_empty-1:-1].astype(np.int32)
int new_cluster_id, old_cluster_id, far_idx, idx
floating weight
for idx in range(n_empty):
new_cluster_id = empty_clusters[idx]
far_idx = far_from_centers[idx]
weight = sample_weight[far_idx]
old_cluster_id = labels[far_idx]
for k in range(X_indptr[far_idx], X_indptr[far_idx + 1]):
centers_new[old_cluster_id, X_indices[k]] -= X_data[k] * weight
centers_new[new_cluster_id, X_indices[k]] = X_data[k] * weight
weight_in_clusters[new_cluster_id] = weight
weight_in_clusters[old_cluster_id] -= weight
cdef void _average_centers(
floating[:, ::1] centers, # INOUT
const floating[::1] weight_in_clusters # IN
):
"""Average new centers wrt weights."""
cdef:
int n_clusters = centers.shape[0]
int n_features = centers.shape[1]
int j, k
floating alpha
int argmax_weight = np.argmax(weight_in_clusters)
for j in range(n_clusters):
if weight_in_clusters[j] > 0:
alpha = 1.0 / weight_in_clusters[j]
for k in range(n_features):
centers[j, k] *= alpha
else:
# For convenience, we avoid setting empty clusters at the origin but place
# them at the location of the biggest cluster.
for k in range(n_features):
centers[j, k] = centers[argmax_weight, k]
cdef void _center_shift(
const floating[:, ::1] centers_old, # IN
const floating[:, ::1] centers_new, # IN
floating[::1] center_shift # OUT
):
"""Compute shift between old and new centers."""
cdef:
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
int j
for j in range(n_clusters):
center_shift[j] = _euclidean_dense_dense(
¢ers_new[j, 0], ¢ers_old[j, 0], n_features, False)
def _is_same_clustering(
const int[::1] labels1,
const int[::1] labels2,
n_clusters
):
"""Check if two arrays of labels are the same up to a permutation of the labels"""
cdef int[::1] mapping = np.full(fill_value=-1, shape=(n_clusters,), dtype=np.int32)
cdef int i
for i in range(labels1.shape[0]):
if mapping[labels1[i]] == -1:
mapping[labels1[i]] = labels2[i]
elif mapping[labels1[i]] != labels2[i]:
return False
return True
|