File: _k_means_minibatch.pyx

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (218 lines) | stat: -rw-r--r-- 8,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from cython cimport floating
from cython.parallel cimport parallel, prange
from libc.stdlib cimport malloc, free


def _minibatch_update_dense(
        const floating[:, ::1] X,            # IN
        const floating[::1] sample_weight,   # IN
        const floating[:, ::1] centers_old,  # IN
        floating[:, ::1] centers_new,        # OUT
        floating[::1] weight_sums,           # INOUT
        const int[::1] labels,               # IN
        int n_threads):
    """Update of the centers for dense MiniBatchKMeans.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features), dtype=floating
        The observations to cluster.

    sample_weight : ndarray of shape (n_samples,), dtype=floating
        The weights for each observation in X.

    centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
        Centers before previous iteration, placeholder for the centers after
        previous iteration.

    centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
        Centers after previous iteration, placeholder for the new centers
        computed during this iteration.

    weight_sums : ndarray of shape (n_clusters,), dtype=floating
        Current sums of the accumulated weights for each center.

    labels : ndarray of shape (n_samples,), dtype=int
        labels assignment.

    n_threads : int
        The number of threads to be used by openmp.
    """
    cdef:
        int n_samples = X.shape[0]
        int n_clusters = centers_old.shape[0]
        int cluster_idx

        int *indices

    with nogil, parallel(num_threads=n_threads):
        indices = <int*> malloc(n_samples * sizeof(int))

        for cluster_idx in prange(n_clusters, schedule="static"):
            update_center_dense(cluster_idx, X, sample_weight,
                                centers_old, centers_new, weight_sums, labels,
                                indices)

        free(indices)


cdef void update_center_dense(
        int cluster_idx,
        const floating[:, ::1] X,            # IN
        const floating[::1] sample_weight,   # IN
        const floating[:, ::1] centers_old,  # IN
        floating[:, ::1] centers_new,        # OUT
        floating[::1] weight_sums,           # INOUT
        const int[::1] labels,               # IN
        int *indices) noexcept nogil:        # TMP
    """Update of a single center for dense MinibatchKMeans"""
    cdef:
        int n_samples = sample_weight.shape[0]
        int n_features = centers_old.shape[1]
        floating alpha
        int n_indices
        int k, sample_idx, feature_idx

        floating wsum = 0

    # indices = np.where(labels == cluster_idx)[0]
    k = 0
    for sample_idx in range(n_samples):
        if labels[sample_idx] == cluster_idx:
            indices[k] = sample_idx
            wsum += sample_weight[sample_idx]
            k += 1
    n_indices = k

    if wsum > 0:
        # Undo the previous count-based scaling for this cluster center
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] = centers_old[cluster_idx, feature_idx] * weight_sums[cluster_idx]

        # Update cluster with new point members
        for k in range(n_indices):
            sample_idx = indices[k]
            for feature_idx in range(n_features):
                centers_new[cluster_idx, feature_idx] += X[sample_idx, feature_idx] * sample_weight[sample_idx]

        # Update the count statistics for this center
        weight_sums[cluster_idx] += wsum

        # Rescale to compute mean of all points (old and new)
        alpha = 1 / weight_sums[cluster_idx]
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] *= alpha
    else:
        # No sample was assigned to this cluster in this batch of data
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] = centers_old[cluster_idx, feature_idx]


def _minibatch_update_sparse(
        X,                                   # IN
        const floating[::1] sample_weight,   # IN
        const floating[:, ::1] centers_old,  # IN
        floating[:, ::1] centers_new,        # OUT
        floating[::1] weight_sums,           # INOUT
        const int[::1] labels,               # IN
        int n_threads):
    """Update of the centers for sparse MiniBatchKMeans.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features), dtype=floating
        The observations to cluster. Must be in CSR format.

    sample_weight : ndarray of shape (n_samples,), dtype=floating
        The weights for each observation in X.

    centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
        Centers before previous iteration, placeholder for the centers after
        previous iteration.

    centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
        Centers after previous iteration, placeholder for the new centers
        computed during this iteration.

    weight_sums : ndarray of shape (n_clusters,), dtype=floating
        Current sums of the accumulated weights for each center.

    labels : ndarray of shape (n_samples,), dtype=int
        labels assignment.

    n_threads : int
        The number of threads to be used by openmp.
    """
    cdef:
        floating[::1] X_data = X.data
        int[::1] X_indices = X.indices
        int[::1] X_indptr = X.indptr
        int n_samples = X.shape[0]
        int n_clusters = centers_old.shape[0]
        int cluster_idx

        int *indices

    with nogil, parallel(num_threads=n_threads):
        indices = <int*> malloc(n_samples * sizeof(int))

        for cluster_idx in prange(n_clusters, schedule="static"):
            update_center_sparse(cluster_idx, X_data, X_indices, X_indptr,
                                 sample_weight, centers_old, centers_new,
                                 weight_sums, labels, indices)

        free(indices)


cdef void update_center_sparse(
        int cluster_idx,
        const floating[::1] X_data,          # IN
        const int[::1] X_indices,            # IN
        const int[::1] X_indptr,             # IN
        const floating[::1] sample_weight,   # IN
        const floating[:, ::1] centers_old,  # IN
        floating[:, ::1] centers_new,        # OUT
        floating[::1] weight_sums,           # INOUT
        const int[::1] labels,               # IN
        int *indices) noexcept nogil:        # TMP
    """Update of a single center for sparse MinibatchKMeans"""
    cdef:
        int n_samples = sample_weight.shape[0]
        int n_features = centers_old.shape[1]
        floating alpha
        int n_indices
        int k, sample_idx, feature_idx

        floating wsum = 0

    # indices = np.where(labels == cluster_idx)[0]
    k = 0
    for sample_idx in range(n_samples):
        if labels[sample_idx] == cluster_idx:
            indices[k] = sample_idx
            wsum += sample_weight[sample_idx]
            k += 1
    n_indices = k

    if wsum > 0:
        # Undo the previous count-based scaling for this cluster center:
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] = centers_old[cluster_idx, feature_idx] * weight_sums[cluster_idx]

        # Update cluster with new point members
        for k in range(n_indices):
            sample_idx = indices[k]
            for feature_idx in range(X_indptr[sample_idx], X_indptr[sample_idx + 1]):
                centers_new[cluster_idx, X_indices[feature_idx]] += X_data[feature_idx] * sample_weight[sample_idx]

        # Update the count statistics for this center
        weight_sums[cluster_idx] += wsum

        # Rescale to compute mean of all points (old and new)
        alpha = 1 / weight_sums[cluster_idx]
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] *= alpha
    else:
        # No sample was assigned to this cluster in this batch of data
        for feature_idx in range(n_features):
            centers_new[cluster_idx, feature_idx] = centers_old[cluster_idx, feature_idx]