File: test_feature_agglomeration.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (55 lines) | stat: -rw-r--r-- 1,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
Tests for sklearn.cluster._feature_agglomeration
"""

import numpy as np
from numpy.testing import assert_array_equal

from sklearn.cluster import FeatureAgglomeration
from sklearn.datasets import make_blobs
from sklearn.utils._testing import assert_array_almost_equal


def test_feature_agglomeration():
    n_clusters = 1
    X = np.array([0, 0, 1]).reshape(1, 3)  # (n_samples, n_features)

    agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.mean)
    agglo_median = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.median)
    agglo_mean.fit(X)
    agglo_median.fit(X)

    assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
    assert np.size(np.unique(agglo_median.labels_)) == n_clusters
    assert np.size(agglo_mean.labels_) == X.shape[1]
    assert np.size(agglo_median.labels_) == X.shape[1]

    # Test transform
    Xt_mean = agglo_mean.transform(X)
    Xt_median = agglo_median.transform(X)
    assert Xt_mean.shape[1] == n_clusters
    assert Xt_median.shape[1] == n_clusters
    assert Xt_mean == np.array([1 / 3.0])
    assert Xt_median == np.array([0.0])

    # Test inverse transform
    X_full_mean = agglo_mean.inverse_transform(Xt_mean)
    X_full_median = agglo_median.inverse_transform(Xt_median)
    assert np.unique(X_full_mean[0]).size == n_clusters
    assert np.unique(X_full_median[0]).size == n_clusters

    assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean)
    assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)


def test_feature_agglomeration_feature_names_out():
    """Check `get_feature_names_out` for `FeatureAgglomeration`."""
    X, _ = make_blobs(n_features=6, random_state=0)
    agglo = FeatureAgglomeration(n_clusters=3)
    agglo.fit(X)
    n_clusters = agglo.n_clusters_

    names_out = agglo.get_feature_names_out()
    assert_array_equal(
        [f"featureagglomeration{i}" for i in range(n_clusters)], names_out
    )