File: test_mean_shift.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (215 lines) | stat: -rw-r--r-- 7,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Testing for mean shift clustering methods

"""

import warnings

import numpy as np
import pytest

from sklearn.cluster import MeanShift, estimate_bandwidth, get_bin_seeds, mean_shift
from sklearn.datasets import make_blobs
from sklearn.metrics import v_measure_score
from sklearn.utils._testing import assert_allclose, assert_array_equal

n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
    n_samples=300,
    n_features=2,
    centers=centers,
    cluster_std=0.4,
    shuffle=True,
    random_state=11,
)


def test_convergence_of_1d_constant_data():
    # Test convergence using 1D constant data
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/28926
    model = MeanShift()
    n_iter = model.fit(np.ones(10).reshape(-1, 1)).n_iter_
    assert n_iter < model.max_iter


def test_estimate_bandwidth():
    # Test estimate_bandwidth
    bandwidth = estimate_bandwidth(X, n_samples=200)
    assert 0.9 <= bandwidth <= 1.5


def test_estimate_bandwidth_1sample(global_dtype):
    # Test estimate_bandwidth when n_samples=1 and quantile<1, so that
    # n_neighbors is set to 1.
    bandwidth = estimate_bandwidth(
        X.astype(global_dtype, copy=False), n_samples=1, quantile=0.3
    )

    assert bandwidth.dtype == X.dtype
    assert bandwidth == pytest.approx(0.0, abs=1e-5)


@pytest.mark.parametrize(
    "bandwidth, cluster_all, expected, first_cluster_label",
    [(1.2, True, 3, 0), (1.2, False, 4, -1)],
)
def test_mean_shift(
    global_dtype, bandwidth, cluster_all, expected, first_cluster_label
):
    # Test MeanShift algorithm
    X_with_global_dtype = X.astype(global_dtype, copy=False)
    ms = MeanShift(bandwidth=bandwidth, cluster_all=cluster_all)
    labels = ms.fit(X_with_global_dtype).labels_
    labels_unique = np.unique(labels)
    n_clusters_ = len(labels_unique)
    assert n_clusters_ == expected
    assert labels_unique[0] == first_cluster_label
    assert ms.cluster_centers_.dtype == global_dtype

    cluster_centers, labels_mean_shift = mean_shift(
        X_with_global_dtype, cluster_all=cluster_all
    )
    labels_mean_shift_unique = np.unique(labels_mean_shift)
    n_clusters_mean_shift = len(labels_mean_shift_unique)
    assert n_clusters_mean_shift == expected
    assert labels_mean_shift_unique[0] == first_cluster_label
    assert cluster_centers.dtype == global_dtype


def test_parallel(global_dtype, global_random_seed):
    centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
    X, _ = make_blobs(
        n_samples=50,
        n_features=2,
        centers=centers,
        cluster_std=0.4,
        shuffle=True,
        random_state=global_random_seed,
    )

    X = X.astype(global_dtype, copy=False)

    ms1 = MeanShift(n_jobs=2)
    ms1.fit(X)

    ms2 = MeanShift()
    ms2.fit(X)

    assert_allclose(ms1.cluster_centers_, ms2.cluster_centers_)
    assert ms1.cluster_centers_.dtype == ms2.cluster_centers_.dtype
    assert_array_equal(ms1.labels_, ms2.labels_)


def test_meanshift_predict(global_dtype):
    # Test MeanShift.predict
    ms = MeanShift(bandwidth=1.2)
    X_with_global_dtype = X.astype(global_dtype, copy=False)
    labels = ms.fit_predict(X_with_global_dtype)
    labels2 = ms.predict(X_with_global_dtype)
    assert_array_equal(labels, labels2)


def test_meanshift_all_orphans():
    # init away from the data, crash with a sensible warning
    ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]])
    msg = "No point was within bandwidth=0.1"
    with pytest.raises(ValueError, match=msg):
        ms.fit(
            X,
        )


def test_unfitted():
    # Non-regression: before fit, there should be not fitted attributes.
    ms = MeanShift()
    assert not hasattr(ms, "cluster_centers_")
    assert not hasattr(ms, "labels_")


def test_cluster_intensity_tie(global_dtype):
    X = np.array([[1, 1], [2, 1], [1, 0], [4, 7], [3, 5], [3, 6]], dtype=global_dtype)
    c1 = MeanShift(bandwidth=2).fit(X)

    X = np.array([[4, 7], [3, 5], [3, 6], [1, 1], [2, 1], [1, 0]], dtype=global_dtype)
    c2 = MeanShift(bandwidth=2).fit(X)
    assert_array_equal(c1.labels_, [1, 1, 1, 0, 0, 0])
    assert_array_equal(c2.labels_, [0, 0, 0, 1, 1, 1])


def test_bin_seeds(global_dtype):
    # Test the bin seeding technique which can be used in the mean shift
    # algorithm
    # Data is just 6 points in the plane
    X = np.array(
        [[1.0, 1.0], [1.4, 1.4], [1.8, 1.2], [2.0, 1.0], [2.1, 1.1], [0.0, 0.0]],
        dtype=global_dtype,
    )

    # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be
    # found
    ground_truth = {(1.0, 1.0), (2.0, 1.0), (0.0, 0.0)}
    test_bins = get_bin_seeds(X, 1, 1)
    test_result = set(tuple(p) for p in test_bins)
    assert len(ground_truth.symmetric_difference(test_result)) == 0

    # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be
    # found
    ground_truth = {(1.0, 1.0), (2.0, 1.0)}
    test_bins = get_bin_seeds(X, 1, 2)
    test_result = set(tuple(p) for p in test_bins)
    assert len(ground_truth.symmetric_difference(test_result)) == 0

    # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found
    # we bail and use the whole data here.
    with warnings.catch_warnings(record=True):
        test_bins = get_bin_seeds(X, 0.01, 1)
    assert_allclose(test_bins, X)

    # tight clusters around [0, 0] and [1, 1], only get two bins
    X, _ = make_blobs(
        n_samples=100,
        n_features=2,
        centers=[[0, 0], [1, 1]],
        cluster_std=0.1,
        random_state=0,
    )
    X = X.astype(global_dtype, copy=False)
    test_bins = get_bin_seeds(X, 1)
    assert_array_equal(test_bins, [[0, 0], [1, 1]])


@pytest.mark.parametrize("max_iter", [1, 100])
def test_max_iter(max_iter):
    clusters1, _ = mean_shift(X, max_iter=max_iter)
    ms = MeanShift(max_iter=max_iter).fit(X)
    clusters2 = ms.cluster_centers_

    assert ms.n_iter_ <= ms.max_iter
    assert len(clusters1) == len(clusters2)

    for c1, c2 in zip(clusters1, clusters2):
        assert np.allclose(c1, c2)


def test_mean_shift_zero_bandwidth(global_dtype):
    # Check that mean shift works when the estimated bandwidth is 0.
    X = np.array([1, 1, 1, 2, 2, 2, 3, 3], dtype=global_dtype).reshape(-1, 1)

    # estimate_bandwidth with default args returns 0 on this dataset
    bandwidth = estimate_bandwidth(X)
    assert bandwidth == 0

    # get_bin_seeds with a 0 bin_size should return the dataset itself
    assert get_bin_seeds(X, bin_size=bandwidth) is X

    # MeanShift with binning and a 0 estimated bandwidth should be equivalent
    # to no binning.
    ms_binning = MeanShift(bin_seeding=True, bandwidth=None).fit(X)
    ms_nobinning = MeanShift(bin_seeding=False).fit(X)
    expected_labels = np.array([0, 0, 0, 1, 1, 1, 2, 2])

    assert v_measure_score(ms_binning.labels_, expected_labels) == pytest.approx(1)
    assert v_measure_score(ms_nobinning.labels_, expected_labels) == pytest.approx(1)
    assert_allclose(ms_binning.cluster_centers_, ms_nobinning.cluster_centers_)