File: _column_transformer.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (1604 lines) | stat: -rw-r--r-- 63,786 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
"""
The :mod:`sklearn.compose._column_transformer` module implements utilities
to work with heterogeneous data and to apply different transformers to
different columns.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from collections import Counter
from functools import partial
from itertools import chain
from numbers import Integral, Real

import numpy as np
from scipy import sparse

from ..base import TransformerMixin, _fit_context, clone
from ..pipeline import _fit_transform_one, _name_estimators, _transform_one
from ..preprocessing import FunctionTransformer
from ..utils import Bunch
from ..utils._indexing import _determine_key_type, _get_column_indices, _safe_indexing
from ..utils._metadata_requests import METHODS
from ..utils._param_validation import HasMethods, Hidden, Interval, StrOptions
from ..utils._repr_html.estimator import _VisualBlock
from ..utils._set_output import (
    _get_container_adapter,
    _get_output_config,
    _safe_set_output,
)
from ..utils._tags import get_tags
from ..utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    _routing_enabled,
    process_routing,
)
from ..utils.metaestimators import _BaseComposition
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
    _check_feature_names,
    _check_feature_names_in,
    _check_n_features,
    _get_feature_names,
    _is_pandas_df,
    _num_samples,
    check_array,
    check_is_fitted,
)

__all__ = ["ColumnTransformer", "make_column_selector", "make_column_transformer"]


_ERR_MSG_1DCOLUMN = (
    "1D data passed to a transformer that expects 2D data. "
    "Try to specify the column selection as a list of one "
    "item instead of a scalar."
)


class ColumnTransformer(TransformerMixin, _BaseComposition):
    """Applies transformers to columns of an array or pandas DataFrame.

    This estimator allows different columns or column subsets of the input
    to be transformed separately and the features generated by each transformer
    will be concatenated to form a single feature space.
    This is useful for heterogeneous or columnar data, to combine several
    feature extraction mechanisms or transformations into a single transformer.

    Read more in the :ref:`User Guide <column_transformer>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    transformers : list of tuples
        List of (name, transformer, columns) tuples specifying the
        transformer objects to be applied to subsets of the data.

        name : str
            Like in Pipeline and FeatureUnion, this allows the transformer and
            its parameters to be set using ``set_params`` and searched in grid
            search.
        transformer : {'drop', 'passthrough'} or estimator
            Estimator must support :term:`fit` and :term:`transform`.
            Special-cased strings 'drop' and 'passthrough' are accepted as
            well, to indicate to drop the columns or to pass them through
            untransformed, respectively.
        columns :  str, array-like of str, int, array-like of int, \
                array-like of bool, slice or callable
            Indexes the data on its second axis. Integers are interpreted as
            positional columns, while strings can reference DataFrame columns
            by name.  A scalar string or int should be used where
            ``transformer`` expects X to be a 1d array-like (vector),
            otherwise a 2d array will be passed to the transformer.
            A callable is passed the input data `X` and can return any of the
            above. To select multiple columns by name or dtype, you can use
            :obj:`make_column_selector`.

    remainder : {'drop', 'passthrough'} or estimator, default='drop'
        By default, only the specified columns in `transformers` are
        transformed and combined in the output, and the non-specified
        columns are dropped. (default of ``'drop'``).
        By specifying ``remainder='passthrough'``, all remaining columns that
        were not specified in `transformers`, but present in the data passed
        to `fit` will be automatically passed through. This subset of columns
        is concatenated with the output of the transformers. For dataframes,
        extra columns not seen during `fit` will be excluded from the output
        of `transform`.
        By setting ``remainder`` to be an estimator, the remaining
        non-specified columns will use the ``remainder`` estimator. The
        estimator must support :term:`fit` and :term:`transform`.
        Note that using this feature requires that the DataFrame columns
        input at :term:`fit` and :term:`transform` have identical order.

    sparse_threshold : float, default=0.3
        If the output of the different transformers contains sparse matrices,
        these will be stacked as a sparse matrix if the overall density is
        lower than this value. Use ``sparse_threshold=0`` to always return
        dense.  When the transformed output consists of all dense data, the
        stacked result will be dense, and this keyword will be ignored.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    transformer_weights : dict, default=None
        Multiplicative weights for features per transformer. The output of the
        transformer is multiplied by these weights. Keys are transformer names,
        values the weights.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    verbose_feature_names_out : bool, str or Callable[[str, str], str], default=True

        - If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix
          all feature names with the name of the transformer that generated that
          feature. It is equivalent to setting
          `verbose_feature_names_out="{transformer_name}__{feature_name}"`.
        - If False, :meth:`ColumnTransformer.get_feature_names_out` will not
          prefix any feature names and will error if feature names are not
          unique.
        - If ``Callable[[str, str], str]``,
          :meth:`ColumnTransformer.get_feature_names_out` will rename all the features
          using the name of the transformer. The first argument of the callable is the
          transformer name and the second argument is the feature name. The returned
          string will be the new feature name.
        - If ``str``, it must be a string ready for formatting. The given string will
          be formatted using two field names: ``transformer_name`` and ``feature_name``.
          e.g. ``"{feature_name}__{transformer_name}"``. See :meth:`str.format` method
          from the standard library for more info.

        .. versionadded:: 1.0

        .. versionchanged:: 1.6
            `verbose_feature_names_out` can be a callable or a string to be formatted.

    force_int_remainder_cols : bool, default=False
        This parameter has no effect.

        .. note::
            If you do not access the list of columns for the remainder columns
            in the `transformers_` fitted attribute, you do not need to set
            this parameter.

        .. versionadded:: 1.5

        .. versionchanged:: 1.7
           The default value for `force_int_remainder_cols` will change from
           `True` to `False` in version 1.7.

        .. deprecated:: 1.7
           `force_int_remainder_cols` is deprecated and will be removed in 1.9.

    Attributes
    ----------
    transformers_ : list
        The collection of fitted transformers as tuples of (name,
        fitted_transformer, column). `fitted_transformer` can be an estimator,
        or `'drop'`; `'passthrough'` is replaced with an equivalent
        :class:`~sklearn.preprocessing.FunctionTransformer`. In case there were
        no columns selected, this will be the unfitted transformer. If there
        are remaining columns, the final element is a tuple of the form:
        ('remainder', transformer, remaining_columns) corresponding to the
        ``remainder`` parameter. If there are remaining columns, then
        ``len(transformers_)==len(transformers)+1``, otherwise
        ``len(transformers_)==len(transformers)``.

        .. versionadded:: 1.7
            The format of the remaining columns now attempts to match that of the other
            transformers: if all columns were provided as column names (`str`), the
            remaining columns are stored as column names; if all columns were provided
            as mask arrays (`bool`), so are the remaining columns; in all other cases
            the remaining columns are stored as indices (`int`).

    named_transformers_ : :class:`~sklearn.utils.Bunch`
        Read-only attribute to access any transformer by given name.
        Keys are transformer names and values are the fitted transformer
        objects.

    sparse_output_ : bool
        Boolean flag indicating whether the output of ``transform`` is a
        sparse matrix or a dense numpy array, which depends on the output
        of the individual transformers and the `sparse_threshold` keyword.

    output_indices_ : dict
        A dictionary from each transformer name to a slice, where the slice
        corresponds to indices in the transformed output. This is useful to
        inspect which transformer is responsible for which transformed
        feature(s).

        .. versionadded:: 1.0

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying transformers expose such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    make_column_transformer : Convenience function for
        combining the outputs of multiple transformer objects applied to
        column subsets of the original feature space.
    make_column_selector : Convenience function for selecting
        columns based on datatype or the columns name with a regex pattern.

    Notes
    -----
    The order of the columns in the transformed feature matrix follows the
    order of how the columns are specified in the `transformers` list.
    Columns of the original feature matrix that are not specified are
    dropped from the resulting transformed feature matrix, unless specified
    in the `passthrough` keyword. Those columns specified with `passthrough`
    are added at the right to the output of the transformers.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.compose import ColumnTransformer
    >>> from sklearn.preprocessing import Normalizer
    >>> ct = ColumnTransformer(
    ...     [("norm1", Normalizer(norm='l1'), [0, 1]),
    ...      ("norm2", Normalizer(norm='l1'), slice(2, 4))])
    >>> X = np.array([[0., 1., 2., 2.],
    ...               [1., 1., 0., 1.]])
    >>> # Normalizer scales each row of X to unit norm. A separate scaling
    >>> # is applied for the two first and two last elements of each
    >>> # row independently.
    >>> ct.fit_transform(X)
    array([[0. , 1. , 0.5, 0.5],
           [0.5, 0.5, 0. , 1. ]])

    :class:`ColumnTransformer` can be configured with a transformer that requires
    a 1d array by setting the column to a string:

    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> from sklearn.preprocessing import MinMaxScaler
    >>> import pandas as pd   # doctest: +SKIP
    >>> X = pd.DataFrame({
    ...     "documents": ["First item", "second one here", "Is this the last?"],
    ...     "width": [3, 4, 5],
    ... })  # doctest: +SKIP
    >>> # "documents" is a string which configures ColumnTransformer to
    >>> # pass the documents column as a 1d array to the CountVectorizer
    >>> ct = ColumnTransformer(
    ...     [("text_preprocess", CountVectorizer(), "documents"),
    ...      ("num_preprocess", MinMaxScaler(), ["width"])])
    >>> X_trans = ct.fit_transform(X)  # doctest: +SKIP

    For a more detailed example of usage, see
    :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py`.
    """

    _parameter_constraints: dict = {
        "transformers": [list, Hidden(tuple)],
        "remainder": [
            StrOptions({"drop", "passthrough"}),
            HasMethods(["fit", "transform"]),
            HasMethods(["fit_transform", "transform"]),
        ],
        "sparse_threshold": [Interval(Real, 0, 1, closed="both")],
        "n_jobs": [Integral, None],
        "transformer_weights": [dict, None],
        "verbose": ["verbose"],
        "verbose_feature_names_out": ["boolean", str, callable],
        "force_int_remainder_cols": ["boolean", Hidden(StrOptions({"deprecated"}))],
    }

    def __init__(
        self,
        transformers,
        *,
        remainder="drop",
        sparse_threshold=0.3,
        n_jobs=None,
        transformer_weights=None,
        verbose=False,
        verbose_feature_names_out=True,
        force_int_remainder_cols="deprecated",
    ):
        self.transformers = transformers
        self.remainder = remainder
        self.sparse_threshold = sparse_threshold
        self.n_jobs = n_jobs
        self.transformer_weights = transformer_weights
        self.verbose = verbose
        self.verbose_feature_names_out = verbose_feature_names_out
        self.force_int_remainder_cols = force_int_remainder_cols

    @property
    def _transformers(self):
        """
        Internal list of transformer only containing the name and
        transformers, dropping the columns.

        DO NOT USE: This is for the implementation of get_params via
        BaseComposition._get_params which expects lists of tuples of len 2.

        To iterate through the transformers, use ``self._iter`` instead.
        """
        try:
            return [(name, trans) for name, trans, _ in self.transformers]
        except (TypeError, ValueError):
            return self.transformers

    @_transformers.setter
    def _transformers(self, value):
        """DO NOT USE: This is for the implementation of set_params via
        BaseComposition._get_params which gives lists of tuples of len 2.
        """
        try:
            self.transformers = [
                (name, trans, col)
                for ((name, trans), (_, _, col)) in zip(value, self.transformers)
            ]
        except (TypeError, ValueError):
            self.transformers = value

    def set_output(self, *, transform=None):
        """Set the output container when `"transform"` and `"fit_transform"` are called.

        Calling `set_output` will set the output of all estimators in `transformers`
        and `transformers_`.

        Parameters
        ----------
        transform : {"default", "pandas", "polars"}, default=None
            Configure output of `transform` and `fit_transform`.

            - `"default"`: Default output format of a transformer
            - `"pandas"`: DataFrame output
            - `"polars"`: Polars output
            - `None`: Transform configuration is unchanged

            .. versionadded:: 1.4
                `"polars"` option was added.

        Returns
        -------
        self : estimator instance
            Estimator instance.
        """
        super().set_output(transform=transform)

        transformers = (
            trans
            for _, trans, _ in chain(
                self.transformers, getattr(self, "transformers_", [])
            )
            if trans not in {"passthrough", "drop"}
        )
        for trans in transformers:
            _safe_set_output(trans, transform=transform)

        if self.remainder not in {"passthrough", "drop"}:
            _safe_set_output(self.remainder, transform=transform)

        return self

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `transformers` of the
        `ColumnTransformer`.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        return self._get_params("_transformers", deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``. Note that you
        can directly set the parameters of the estimators contained in
        `transformers` of `ColumnTransformer`.

        Parameters
        ----------
        **kwargs : dict
            Estimator parameters.

        Returns
        -------
        self : ColumnTransformer
            This estimator.
        """
        self._set_params("_transformers", **kwargs)
        return self

    def _iter(self, fitted, column_as_labels, skip_drop, skip_empty_columns):
        """
        Generate (name, trans, columns, weight) tuples.


        Parameters
        ----------
        fitted : bool
            If True, use the fitted transformers (``self.transformers_``) to
            iterate through transformers, else use the transformers passed by
            the user (``self.transformers``).

        column_as_labels : bool
            If True, columns are returned as string labels. If False, columns
            are returned as they were given by the user. This can only be True
            if the ``ColumnTransformer`` is already fitted.

        skip_drop : bool
            If True, 'drop' transformers are filtered out.

        skip_empty_columns : bool
            If True, transformers with empty selected columns are filtered out.

        Yields
        ------
        A generator of tuples containing:
            - name : the name of the transformer
            - transformer : the transformer object
            - columns : the columns for that transformer
            - weight : the weight of the transformer
        """
        if fitted:
            transformers = self.transformers_
        else:
            # interleave the validated column specifiers
            transformers = [
                (name, trans, column)
                for (name, trans, _), column in zip(self.transformers, self._columns)
            ]
            # add transformer tuple for remainder
            if self._remainder[2]:
                transformers = chain(transformers, [self._remainder])

        get_weight = (self.transformer_weights or {}).get

        for name, trans, columns in transformers:
            if skip_drop and trans == "drop":
                continue
            if skip_empty_columns and _is_empty_column_selection(columns):
                continue

            if column_as_labels:
                # Convert all columns to using their string labels
                columns_is_scalar = np.isscalar(columns)

                indices = self._transformer_to_input_indices[name]
                columns = self.feature_names_in_[indices]

                if columns_is_scalar:
                    # selection is done with one dimension
                    columns = columns[0]

            yield (name, trans, columns, get_weight(name))

    def _validate_transformers(self):
        """Validate names of transformers and the transformers themselves.

        This checks whether given transformers have the required methods, i.e.
        `fit` or `fit_transform` and `transform` implemented.
        """
        if not self.transformers:
            return

        names, transformers, _ = zip(*self.transformers)

        # validate names
        self._validate_names(names)

        # validate estimators
        for t in transformers:
            if t in ("drop", "passthrough"):
                continue
            if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
                t, "transform"
            ):
                # Used to validate the transformers in the `transformers` list
                raise TypeError(
                    "All estimators should implement fit and "
                    "transform, or can be 'drop' or 'passthrough' "
                    "specifiers. '%s' (type %s) doesn't." % (t, type(t))
                )

    def _validate_column_callables(self, X):
        """
        Converts callable column specifications.

        This stores a dictionary of the form `{step_name: column_indices}` and
        calls the `columns` on `X` if `columns` is a callable for a given
        transformer.

        The results are then stored in `self._transformer_to_input_indices`.
        """
        all_columns = []
        transformer_to_input_indices = {}
        for name, _, columns in self.transformers:
            if callable(columns):
                columns = columns(X)
            all_columns.append(columns)
            transformer_to_input_indices[name] = _get_column_indices(X, columns)

        self._columns = all_columns
        self._transformer_to_input_indices = transformer_to_input_indices

    def _validate_remainder(self, X):
        """
        Validates ``remainder`` and defines ``_remainder`` targeting
        the remaining columns.
        """
        cols = set(chain(*self._transformer_to_input_indices.values()))
        remaining = sorted(set(range(self.n_features_in_)) - cols)
        self._transformer_to_input_indices["remainder"] = remaining
        remainder_cols = self._get_remainder_cols(remaining)
        self._remainder = ("remainder", self.remainder, remainder_cols)

    def _get_remainder_cols_dtype(self):
        try:
            all_dtypes = {_determine_key_type(c) for (*_, c) in self.transformers}
            if len(all_dtypes) == 1:
                return next(iter(all_dtypes))
        except ValueError:
            # _determine_key_type raises a ValueError if some transformer
            # columns are Callables
            return "int"
        return "int"

    def _get_remainder_cols(self, indices):
        dtype = self._get_remainder_cols_dtype()
        if dtype == "str":
            return list(self.feature_names_in_[indices])
        if dtype == "bool":
            return [i in indices for i in range(self.n_features_in_)]
        return indices

    @property
    def named_transformers_(self):
        """Access the fitted transformer by name.

        Read-only attribute to access any transformer by given name.
        Keys are transformer names and values are the fitted transformer
        objects.
        """
        # Use Bunch object to improve autocomplete
        return Bunch(**{name: trans for name, trans, _ in self.transformers_})

    def _get_feature_name_out_for_transformer(self, name, trans, feature_names_in):
        """Gets feature names of transformer.

        Used in conjunction with self._iter(fitted=True) in get_feature_names_out.
        """
        column_indices = self._transformer_to_input_indices[name]
        names = feature_names_in[column_indices]
        # An actual transformer
        if not hasattr(trans, "get_feature_names_out"):
            raise AttributeError(
                f"Transformer {name} (type {type(trans).__name__}) does "
                "not provide get_feature_names_out."
            )
        return trans.get_feature_names_out(names)

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        check_is_fitted(self)
        input_features = _check_feature_names_in(self, input_features)

        # List of tuples (name, feature_names_out)
        transformer_with_feature_names_out = []
        for name, trans, *_ in self._iter(
            fitted=True,
            column_as_labels=False,
            skip_empty_columns=True,
            skip_drop=True,
        ):
            feature_names_out = self._get_feature_name_out_for_transformer(
                name, trans, input_features
            )
            if feature_names_out is None:
                continue
            transformer_with_feature_names_out.append((name, feature_names_out))

        if not transformer_with_feature_names_out:
            # No feature names
            return np.array([], dtype=object)

        return self._add_prefix_for_feature_names_out(
            transformer_with_feature_names_out
        )

    def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):
        """Add prefix for feature names out that includes the transformer names.

        Parameters
        ----------
        transformer_with_feature_names_out : list of tuples of (str, array-like of str)
            The tuple consistent of the transformer's name and its feature names out.

        Returns
        -------
        feature_names_out : ndarray of shape (n_features,), dtype=str
            Transformed feature names.
        """
        feature_names_out_callable = None
        if callable(self.verbose_feature_names_out):
            feature_names_out_callable = self.verbose_feature_names_out
        elif isinstance(self.verbose_feature_names_out, str):
            feature_names_out_callable = partial(
                _feature_names_out_with_str_format,
                str_format=self.verbose_feature_names_out,
            )
        elif self.verbose_feature_names_out is True:
            feature_names_out_callable = partial(
                _feature_names_out_with_str_format,
                str_format="{transformer_name}__{feature_name}",
            )

        if feature_names_out_callable is not None:
            # Prefix the feature names out with the transformers name
            names = list(
                chain.from_iterable(
                    (feature_names_out_callable(name, i) for i in feature_names_out)
                    for name, feature_names_out in transformer_with_feature_names_out
                )
            )
            return np.asarray(names, dtype=object)

        # verbose_feature_names_out is False
        # Check that names are all unique without a prefix
        feature_names_count = Counter(
            chain.from_iterable(s for _, s in transformer_with_feature_names_out)
        )
        top_6_overlap = [
            name for name, count in feature_names_count.most_common(6) if count > 1
        ]
        top_6_overlap.sort()
        if top_6_overlap:
            if len(top_6_overlap) == 6:
                # There are more than 5 overlapping names, we only show the 5
                # of the feature names
                names_repr = str(top_6_overlap[:5])[:-1] + ", ...]"
            else:
                names_repr = str(top_6_overlap)
            raise ValueError(
                f"Output feature names: {names_repr} are not unique. Please set "
                "verbose_feature_names_out=True to add prefixes to feature names"
            )

        return np.concatenate(
            [name for _, name in transformer_with_feature_names_out],
        )

    def _update_fitted_transformers(self, transformers):
        """Set self.transformers_ from given transformers.

        Parameters
        ----------
        transformers : list of estimators
            The fitted estimators as the output of
            `self._call_func_on_transformers(func=_fit_transform_one, ...)`.
            That function doesn't include 'drop' or transformers for which no
            column is selected. 'drop' is kept as is, and for the no-column
            transformers the unfitted transformer is put in
            `self.transformers_`.
        """
        # transformers are fitted; excludes 'drop' cases
        fitted_transformers = iter(transformers)
        transformers_ = []

        for name, old, column, _ in self._iter(
            fitted=False,
            column_as_labels=False,
            skip_drop=False,
            skip_empty_columns=False,
        ):
            if old == "drop":
                trans = "drop"
            elif _is_empty_column_selection(column):
                trans = old
            else:
                trans = next(fitted_transformers)
            transformers_.append((name, trans, column))

        # sanity check that transformers is exhausted
        assert not list(fitted_transformers)
        self.transformers_ = transformers_

    def _validate_output(self, result):
        """
        Ensure that the output of each transformer is 2D. Otherwise
        hstack can raise an error or produce incorrect results.
        """
        names = [
            name
            for name, _, _, _ in self._iter(
                fitted=True,
                column_as_labels=False,
                skip_drop=True,
                skip_empty_columns=True,
            )
        ]
        for Xs, name in zip(result, names):
            if not getattr(Xs, "ndim", 0) == 2 and not hasattr(Xs, "__dataframe__"):
                raise ValueError(
                    "The output of the '{0}' transformer should be 2D (numpy array, "
                    "scipy sparse array, dataframe).".format(name)
                )
        if _get_output_config("transform", self)["dense"] == "pandas":
            return
        try:
            import pandas as pd
        except ImportError:
            return
        for Xs, name in zip(result, names):
            if not _is_pandas_df(Xs):
                continue
            for col_name, dtype in Xs.dtypes.to_dict().items():
                if getattr(dtype, "na_value", None) is not pd.NA:
                    continue
                if pd.NA not in Xs[col_name].values:
                    continue
                class_name = self.__class__.__name__
                raise ValueError(
                    f"The output of the '{name}' transformer for column"
                    f" '{col_name}' has dtype {dtype} and uses pandas.NA to"
                    " represent null values. Storing this output in a numpy array"
                    " can cause errors in downstream scikit-learn estimators, and"
                    " inefficiencies. To avoid this problem you can (i)"
                    " store the output in a pandas DataFrame by using"
                    f" {class_name}.set_output(transform='pandas') or (ii) modify"
                    f" the input data or the '{name}' transformer to avoid the"
                    " presence of pandas.NA (for example by using"
                    " pandas.DataFrame.astype)."
                )

    def _record_output_indices(self, Xs):
        """
        Record which transformer produced which column.
        """
        idx = 0
        self.output_indices_ = {}

        for transformer_idx, (name, _, _, _) in enumerate(
            self._iter(
                fitted=True,
                column_as_labels=False,
                skip_drop=True,
                skip_empty_columns=True,
            )
        ):
            n_columns = Xs[transformer_idx].shape[1]
            self.output_indices_[name] = slice(idx, idx + n_columns)
            idx += n_columns

        # `_iter` only generates transformers that have a non empty
        # selection. Here we set empty slices for transformers that
        # generate no output, which are safe for indexing
        all_names = [t[0] for t in self.transformers] + ["remainder"]
        for name in all_names:
            if name not in self.output_indices_:
                self.output_indices_[name] = slice(0, 0)

    def _log_message(self, name, idx, total):
        if not self.verbose:
            return None
        return "(%d of %d) Processing %s" % (idx, total, name)

    def _call_func_on_transformers(self, X, y, func, column_as_labels, routed_params):
        """
        Private function to fit and/or transform on demand.

        Parameters
        ----------
        X : {array-like, dataframe} of shape (n_samples, n_features)
            The data to be used in fit and/or transform.

        y : array-like of shape (n_samples,)
            Targets.

        func : callable
            Function to call, which can be _fit_transform_one or
            _transform_one.

        column_as_labels : bool
            Used to iterate through transformers. If True, columns are returned
            as strings. If False, columns are returned as they were given by
            the user. Can be True only if the ``ColumnTransformer`` is already
            fitted.

        routed_params : dict
            The routed parameters as the output from ``process_routing``.

        Returns
        -------
        Return value (transformers and/or transformed X data) depends
        on the passed function.
        """
        if func is _fit_transform_one:
            fitted = False
        else:  # func is _transform_one
            fitted = True

        transformers = list(
            self._iter(
                fitted=fitted,
                column_as_labels=column_as_labels,
                skip_drop=True,
                skip_empty_columns=True,
            )
        )
        try:
            jobs = []
            for idx, (name, trans, columns, weight) in enumerate(transformers, start=1):
                if func is _fit_transform_one:
                    if trans == "passthrough":
                        output_config = _get_output_config("transform", self)
                        trans = FunctionTransformer(
                            accept_sparse=True,
                            check_inverse=False,
                            feature_names_out="one-to-one",
                        ).set_output(transform=output_config["dense"])

                    extra_args = dict(
                        message_clsname="ColumnTransformer",
                        message=self._log_message(name, idx, len(transformers)),
                    )
                else:  # func is _transform_one
                    extra_args = {}
                jobs.append(
                    delayed(func)(
                        transformer=clone(trans) if not fitted else trans,
                        X=_safe_indexing(X, columns, axis=1),
                        y=y,
                        weight=weight,
                        **extra_args,
                        params=routed_params[name],
                    )
                )

            return Parallel(n_jobs=self.n_jobs)(jobs)

        except ValueError as e:
            if "Expected 2D array, got 1D array instead" in str(e):
                raise ValueError(_ERR_MSG_1DCOLUMN) from e
            else:
                raise

    def fit(self, X, y=None, **params):
        """Fit all transformers using X.

        Parameters
        ----------
        X : {array-like, dataframe} of shape (n_samples, n_features)
            Input data, of which specified subsets are used to fit the
            transformers.

        y : array-like of shape (n_samples,...), default=None
            Targets for supervised learning.

        **params : dict, default=None
            Parameters to be passed to the underlying transformers' ``fit`` and
            ``transform`` methods.

            You can only pass this if metadata routing is enabled, which you
            can enable using ``sklearn.set_config(enable_metadata_routing=True)``.

            .. versionadded:: 1.4

        Returns
        -------
        self : ColumnTransformer
            This estimator.
        """
        _raise_for_params(params, self, "fit")
        # we use fit_transform to make sure to set sparse_output_ (for which we
        # need the transformed data) to have consistent output type in predict
        self.fit_transform(X, y=y, **params)
        return self

    @_fit_context(
        # estimators in ColumnTransformer.transformers are not validated yet
        prefer_skip_nested_validation=False
    )
    def fit_transform(self, X, y=None, **params):
        """Fit all transformers, transform the data and concatenate results.

        Parameters
        ----------
        X : {array-like, dataframe} of shape (n_samples, n_features)
            Input data, of which specified subsets are used to fit the
            transformers.

        y : array-like of shape (n_samples,), default=None
            Targets for supervised learning.

        **params : dict, default=None
            Parameters to be passed to the underlying transformers' ``fit`` and
            ``transform`` methods.

            You can only pass this if metadata routing is enabled, which you
            can enable using ``sklearn.set_config(enable_metadata_routing=True)``.

            .. versionadded:: 1.4

        Returns
        -------
        X_t : {array-like, sparse matrix} of \
                shape (n_samples, sum_n_components)
            Horizontally stacked results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers. If
            any result is a sparse matrix, everything will be converted to
            sparse matrices.
        """
        _raise_for_params(params, self, "fit_transform")
        _check_feature_names(self, X, reset=True)

        if self.force_int_remainder_cols != "deprecated":
            warnings.warn(
                "The parameter `force_int_remainder_cols` is deprecated and will be "
                "removed in 1.9. It has no effect. Leave it to its default value to "
                "avoid this warning.",
                FutureWarning,
            )

        X = _check_X(X)
        # set n_features_in_ attribute
        _check_n_features(self, X, reset=True)
        self._validate_transformers()
        n_samples = _num_samples(X)

        self._validate_column_callables(X)
        self._validate_remainder(X)

        if _routing_enabled():
            routed_params = process_routing(self, "fit_transform", **params)
        else:
            routed_params = self._get_empty_routing()

        result = self._call_func_on_transformers(
            X,
            y,
            _fit_transform_one,
            column_as_labels=False,
            routed_params=routed_params,
        )

        if not result:
            self._update_fitted_transformers([])
            # All transformers are None
            return np.zeros((n_samples, 0))

        Xs, transformers = zip(*result)

        # determine if concatenated output will be sparse or not
        if any(sparse.issparse(X) for X in Xs):
            nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)
            total = sum(
                X.shape[0] * X.shape[1] if sparse.issparse(X) else X.size for X in Xs
            )
            density = nnz / total
            self.sparse_output_ = density < self.sparse_threshold
        else:
            self.sparse_output_ = False

        self._update_fitted_transformers(transformers)
        self._validate_output(Xs)
        self._record_output_indices(Xs)

        return self._hstack(list(Xs), n_samples=n_samples)

    def transform(self, X, **params):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : {array-like, dataframe} of shape (n_samples, n_features)
            The data to be transformed by subset.

        **params : dict, default=None
            Parameters to be passed to the underlying transformers' ``transform``
            method.

            You can only pass this if metadata routing is enabled, which you
            can enable using ``sklearn.set_config(enable_metadata_routing=True)``.

            .. versionadded:: 1.4

        Returns
        -------
        X_t : {array-like, sparse matrix} of \
                shape (n_samples, sum_n_components)
            Horizontally stacked results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers. If
            any result is a sparse matrix, everything will be converted to
            sparse matrices.
        """
        _raise_for_params(params, self, "transform")
        check_is_fitted(self)
        X = _check_X(X)

        # If ColumnTransformer is fit using a dataframe, and now a dataframe is
        # passed to be transformed, we select columns by name instead. This
        # enables the user to pass X at transform time with extra columns which
        # were not present in fit time, and the order of the columns doesn't
        # matter.
        fit_dataframe_and_transform_dataframe = hasattr(self, "feature_names_in_") and (
            _is_pandas_df(X) or hasattr(X, "__dataframe__")
        )

        n_samples = _num_samples(X)
        column_names = _get_feature_names(X)

        if fit_dataframe_and_transform_dataframe:
            named_transformers = self.named_transformers_
            # check that all names seen in fit are in transform, unless
            # they were dropped
            non_dropped_indices = [
                ind
                for name, ind in self._transformer_to_input_indices.items()
                if name in named_transformers and named_transformers[name] != "drop"
            ]

            all_indices = set(chain(*non_dropped_indices))
            all_names = set(self.feature_names_in_[ind] for ind in all_indices)

            diff = all_names - set(column_names)
            if diff:
                raise ValueError(f"columns are missing: {diff}")
        else:
            # ndarray was used for fitting or transforming, thus we only
            # check that n_features_in_ is consistent
            _check_n_features(self, X, reset=False)

        if _routing_enabled():
            routed_params = process_routing(self, "transform", **params)
        else:
            routed_params = self._get_empty_routing()

        Xs = self._call_func_on_transformers(
            X,
            None,
            _transform_one,
            column_as_labels=fit_dataframe_and_transform_dataframe,
            routed_params=routed_params,
        )
        self._validate_output(Xs)

        if not Xs:
            # All transformers are None
            return np.zeros((n_samples, 0))

        return self._hstack(list(Xs), n_samples=n_samples)

    def _hstack(self, Xs, *, n_samples):
        """Stacks Xs horizontally.

        This allows subclasses to control the stacking behavior, while reusing
        everything else from ColumnTransformer.

        Parameters
        ----------
        Xs : list of {array-like, sparse matrix, dataframe}
            The container to concatenate.
        n_samples : int
            The number of samples in the input data to checking the transformation
            consistency.
        """
        if self.sparse_output_:
            try:
                # since all columns should be numeric before stacking them
                # in a sparse matrix, `check_array` is used for the
                # dtype conversion if necessary.
                converted_Xs = [
                    check_array(X, accept_sparse=True, ensure_all_finite=False)
                    for X in Xs
                ]
            except ValueError as e:
                raise ValueError(
                    "For a sparse output, all columns should "
                    "be a numeric or convertible to a numeric."
                ) from e

            return sparse.hstack(converted_Xs).tocsr()
        else:
            Xs = [f.toarray() if sparse.issparse(f) else f for f in Xs]
            adapter = _get_container_adapter("transform", self)
            if adapter and all(adapter.is_supported_container(X) for X in Xs):
                # rename before stacking as it avoids to error on temporary duplicated
                # columns
                transformer_names = [
                    t[0]
                    for t in self._iter(
                        fitted=True,
                        column_as_labels=False,
                        skip_drop=True,
                        skip_empty_columns=True,
                    )
                ]
                feature_names_outs = [X.columns for X in Xs if X.shape[1] != 0]
                if self.verbose_feature_names_out:
                    # `_add_prefix_for_feature_names_out` takes care about raising
                    # an error if there are duplicated columns.
                    feature_names_outs = self._add_prefix_for_feature_names_out(
                        list(zip(transformer_names, feature_names_outs))
                    )
                else:
                    # check for duplicated columns and raise if any
                    feature_names_outs = list(chain.from_iterable(feature_names_outs))
                    feature_names_count = Counter(feature_names_outs)
                    if any(count > 1 for count in feature_names_count.values()):
                        duplicated_feature_names = sorted(
                            name
                            for name, count in feature_names_count.items()
                            if count > 1
                        )
                        err_msg = (
                            "Duplicated feature names found before concatenating the"
                            " outputs of the transformers:"
                            f" {duplicated_feature_names}.\n"
                        )
                        for transformer_name, X in zip(transformer_names, Xs):
                            if X.shape[1] == 0:
                                continue
                            dup_cols_in_transformer = sorted(
                                set(X.columns).intersection(duplicated_feature_names)
                            )
                            if len(dup_cols_in_transformer):
                                err_msg += (
                                    f"Transformer {transformer_name} has conflicting "
                                    f"columns names: {dup_cols_in_transformer}.\n"
                                )
                        raise ValueError(
                            err_msg
                            + "Either make sure that the transformers named above "
                            "do not generate columns with conflicting names or set "
                            "verbose_feature_names_out=True to automatically "
                            "prefix to the output feature names with the name "
                            "of the transformer to prevent any conflicting "
                            "names."
                        )

                names_idx = 0
                for X in Xs:
                    if X.shape[1] == 0:
                        continue
                    names_out = feature_names_outs[names_idx : names_idx + X.shape[1]]
                    adapter.rename_columns(X, names_out)
                    names_idx += X.shape[1]

                output = adapter.hstack(Xs)
                output_samples = output.shape[0]
                if output_samples != n_samples:
                    raise ValueError(
                        "Concatenating DataFrames from the transformer's output lead to"
                        " an inconsistent number of samples. The output may have Pandas"
                        " Indexes that do not match, or that transformers are returning"
                        " number of samples which are not the same as the number input"
                        " samples."
                    )

                return output

            return np.hstack(Xs)

    def _sk_visual_block_(self):
        if isinstance(self.remainder, str) and self.remainder == "drop":
            transformers = self.transformers
        elif hasattr(self, "_remainder"):
            remainder_columns = self._remainder[2]
            if (
                hasattr(self, "feature_names_in_")
                and remainder_columns
                and not all(isinstance(col, str) for col in remainder_columns)
            ):
                remainder_columns = self.feature_names_in_[remainder_columns].tolist()
            transformers = chain(
                self.transformers, [("remainder", self.remainder, remainder_columns)]
            )
        else:
            transformers = chain(self.transformers, [("remainder", self.remainder, "")])

        names, transformers, name_details = zip(*transformers)
        return _VisualBlock(
            "parallel", transformers, names=names, name_details=name_details
        )

    def __getitem__(self, key):
        try:
            return self.named_transformers_[key]
        except AttributeError as e:
            raise TypeError(
                "ColumnTransformer is subscriptable after it is fitted"
            ) from e
        except KeyError as e:
            raise KeyError(f"'{key}' is not a valid transformer name") from e

    def _get_empty_routing(self):
        """Return empty routing.

        Used while routing can be disabled.

        TODO: Remove when ``set_config(enable_metadata_routing=False)`` is no
        more an option.
        """
        return Bunch(
            **{
                name: Bunch(**{method: {} for method in METHODS})
                for name, step, _, _ in self._iter(
                    fitted=False,
                    column_as_labels=False,
                    skip_drop=True,
                    skip_empty_columns=True,
                )
            }
        )

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.4

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = MetadataRouter(owner=self.__class__.__name__)
        # Here we don't care about which columns are used for which
        # transformers, and whether or not a transformer is used at all, which
        # might happen if no columns are selected for that transformer. We
        # request all metadata requested by all transformers.
        transformers = chain(self.transformers, [("remainder", self.remainder, None)])
        for name, step, _ in transformers:
            method_mapping = MethodMapping()
            if hasattr(step, "fit_transform"):
                (
                    method_mapping.add(caller="fit", callee="fit_transform").add(
                        caller="fit_transform", callee="fit_transform"
                    )
                )
            else:
                (
                    method_mapping.add(caller="fit", callee="fit")
                    .add(caller="fit", callee="transform")
                    .add(caller="fit_transform", callee="fit")
                    .add(caller="fit_transform", callee="transform")
                )
            method_mapping.add(caller="transform", callee="transform")
            router.add(method_mapping=method_mapping, **{name: step})

        return router

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        try:
            tags.input_tags.sparse = all(
                get_tags(trans).input_tags.sparse
                for name, trans, _ in self.transformers
                if trans not in {"passthrough", "drop"}
            )
        except Exception:
            # If `transformers` does not comply with our API (list of tuples)
            # then it will fail. In this case, we assume that `sparse` is False
            # but the parameter validation will raise an error during `fit`.
            pass  # pragma: no cover
        return tags


def _check_X(X):
    """Use check_array only when necessary, e.g. on lists and other non-array-likes."""
    if (
        (hasattr(X, "__array__") and hasattr(X, "shape"))
        or hasattr(X, "__dataframe__")
        or sparse.issparse(X)
    ):
        return X
    return check_array(X, ensure_all_finite="allow-nan", dtype=object)


def _is_empty_column_selection(column):
    """
    Return True if the column selection is empty (empty list or all-False
    boolean array).

    """
    if (
        hasattr(column, "dtype")
        # Not necessarily a numpy dtype, can be a pandas dtype as well
        and isinstance(column.dtype, np.dtype)
        and np.issubdtype(column.dtype, np.bool_)
    ):
        return not column.any()
    elif hasattr(column, "__len__"):
        return len(column) == 0 or (
            all(isinstance(col, bool) for col in column) and not any(column)
        )
    else:
        return False


def _get_transformer_list(estimators):
    """
    Construct (name, trans, column) tuples from list

    """
    transformers, columns = zip(*estimators)
    names, _ = zip(*_name_estimators(transformers))

    transformer_list = list(zip(names, transformers, columns))
    return transformer_list


# This function is not validated using validate_params because
# it's just a factory for ColumnTransformer.
def make_column_transformer(
    *transformers,
    remainder="drop",
    sparse_threshold=0.3,
    n_jobs=None,
    verbose=False,
    verbose_feature_names_out=True,
    force_int_remainder_cols="deprecated",
):
    """Construct a ColumnTransformer from the given transformers.

    This is a shorthand for the ColumnTransformer constructor; it does not
    require, and does not permit, naming the transformers. Instead, they will
    be given names automatically based on their types. It also does not allow
    weighting with ``transformer_weights``.

    Read more in the :ref:`User Guide <make_column_transformer>`.

    Parameters
    ----------
    *transformers : tuples
        Tuples of the form (transformer, columns) specifying the
        transformer objects to be applied to subsets of the data.

        transformer : {'drop', 'passthrough'} or estimator
            Estimator must support :term:`fit` and :term:`transform`.
            Special-cased strings 'drop' and 'passthrough' are accepted as
            well, to indicate to drop the columns or to pass them through
            untransformed, respectively.
        columns : str,  array-like of str, int, array-like of int, slice, \
                array-like of bool or callable
            Indexes the data on its second axis. Integers are interpreted as
            positional columns, while strings can reference DataFrame columns
            by name. A scalar string or int should be used where
            ``transformer`` expects X to be a 1d array-like (vector),
            otherwise a 2d array will be passed to the transformer.
            A callable is passed the input data `X` and can return any of the
            above. To select multiple columns by name or dtype, you can use
            :obj:`make_column_selector`.

    remainder : {'drop', 'passthrough'} or estimator, default='drop'
        By default, only the specified columns in `transformers` are
        transformed and combined in the output, and the non-specified
        columns are dropped. (default of ``'drop'``).
        By specifying ``remainder='passthrough'``, all remaining columns that
        were not specified in `transformers` will be automatically passed
        through. This subset of columns is concatenated with the output of
        the transformers.
        By setting ``remainder`` to be an estimator, the remaining
        non-specified columns will use the ``remainder`` estimator. The
        estimator must support :term:`fit` and :term:`transform`.

    sparse_threshold : float, default=0.3
        If the transformed output consists of a mix of sparse and dense data,
        it will be stacked as a sparse matrix if the density is lower than this
        value. Use ``sparse_threshold=0`` to always return dense.
        When the transformed output consists of all sparse or all dense data,
        the stacked result will be sparse or dense, respectively, and this
        keyword will be ignored.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    verbose_feature_names_out : bool, default=True
        If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix
        all feature names with the name of the transformer that generated that
        feature.
        If False, :meth:`ColumnTransformer.get_feature_names_out` will not
        prefix any feature names and will error if feature names are not
        unique.

        .. versionadded:: 1.0

    force_int_remainder_cols : bool, default=True
        This parameter has no effect.

        .. note::
            If you do not access the list of columns for the remainder columns
            in the :attr:`ColumnTransformer.transformers_` fitted attribute,
            you do not need to set this parameter.

        .. versionadded:: 1.5

        .. versionchanged:: 1.7
           The default value for `force_int_remainder_cols` will change from
           `True` to `False` in version 1.7.

        .. deprecated:: 1.7
           `force_int_remainder_cols` is deprecated and will be removed in version 1.9.

    Returns
    -------
    ct : ColumnTransformer
        Returns a :class:`ColumnTransformer` object.

    See Also
    --------
    ColumnTransformer : Class that allows combining the
        outputs of multiple transformer objects used on column subsets
        of the data into a single feature space.

    Examples
    --------
    >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
    >>> from sklearn.compose import make_column_transformer
    >>> make_column_transformer(
    ...     (StandardScaler(), ['numerical_column']),
    ...     (OneHotEncoder(), ['categorical_column']))
    ColumnTransformer(transformers=[('standardscaler', StandardScaler(...),
                                     ['numerical_column']),
                                    ('onehotencoder', OneHotEncoder(...),
                                     ['categorical_column'])])
    """
    # transformer_weights keyword is not passed through because the user
    # would need to know the automatically generated names of the transformers
    transformer_list = _get_transformer_list(transformers)
    return ColumnTransformer(
        transformer_list,
        n_jobs=n_jobs,
        remainder=remainder,
        sparse_threshold=sparse_threshold,
        verbose=verbose,
        verbose_feature_names_out=verbose_feature_names_out,
        force_int_remainder_cols=force_int_remainder_cols,
    )


class make_column_selector:
    """Create a callable to select columns to be used with
    :class:`ColumnTransformer`.

    :func:`make_column_selector` can select columns based on datatype or the
    columns name with a regex. When using multiple selection criteria, **all**
    criteria must match for a column to be selected.

    For an example of how to use :func:`make_column_selector` within a
    :class:`ColumnTransformer` to select columns based on data type (i.e.
    `dtype`), refer to
    :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py`.

    Parameters
    ----------
    pattern : str, default=None
        Name of columns containing this regex pattern will be included. If
        None, column selection will not be selected based on pattern.

    dtype_include : column dtype or list of column dtypes, default=None
        A selection of dtypes to include. For more details, see
        :meth:`pandas.DataFrame.select_dtypes`.

    dtype_exclude : column dtype or list of column dtypes, default=None
        A selection of dtypes to exclude. For more details, see
        :meth:`pandas.DataFrame.select_dtypes`.

    Returns
    -------
    selector : callable
        Callable for column selection to be used by a
        :class:`ColumnTransformer`.

    See Also
    --------
    ColumnTransformer : Class that allows combining the
        outputs of multiple transformer objects used on column subsets
        of the data into a single feature space.

    Examples
    --------
    >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
    >>> from sklearn.compose import make_column_transformer
    >>> from sklearn.compose import make_column_selector
    >>> import numpy as np
    >>> import pandas as pd  # doctest: +SKIP
    >>> X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
    ...                   'rating': [5, 3, 4, 5]})  # doctest: +SKIP
    >>> ct = make_column_transformer(
    ...       (StandardScaler(),
    ...        make_column_selector(dtype_include=np.number)),  # rating
    ...       (OneHotEncoder(),
    ...        make_column_selector(dtype_include=object)))  # city
    >>> ct.fit_transform(X)  # doctest: +SKIP
    array([[ 0.90453403,  1.        ,  0.        ,  0.        ],
           [-1.50755672,  1.        ,  0.        ,  0.        ],
           [-0.30151134,  0.        ,  1.        ,  0.        ],
           [ 0.90453403,  0.        ,  0.        ,  1.        ]])
    """

    def __init__(self, pattern=None, *, dtype_include=None, dtype_exclude=None):
        self.pattern = pattern
        self.dtype_include = dtype_include
        self.dtype_exclude = dtype_exclude

    def __call__(self, df):
        """Callable for column selection to be used by a
        :class:`ColumnTransformer`.

        Parameters
        ----------
        df : dataframe of shape (n_features, n_samples)
            DataFrame to select columns from.
        """
        if not hasattr(df, "iloc"):
            raise ValueError(
                "make_column_selector can only be applied to pandas dataframes"
            )
        df_row = df.iloc[:1]
        if self.dtype_include is not None or self.dtype_exclude is not None:
            df_row = df_row.select_dtypes(
                include=self.dtype_include, exclude=self.dtype_exclude
            )
        cols = df_row.columns
        if self.pattern is not None:
            cols = cols[cols.str.contains(self.pattern, regex=True)]
        return cols.tolist()


def _feature_names_out_with_str_format(
    transformer_name: str, feature_name: str, str_format: str
) -> str:
    return str_format.format(
        transformer_name=transformer_name, feature_name=feature_name
    )