| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 
 | """Caching loader for the 20 newsgroups text classification dataset.
The description of the dataset is available on the official website at:
    http://people.csail.mit.edu/jrennie/20Newsgroups/
Quoting the introduction:
    The 20 Newsgroups data set is a collection of approximately 20,000
    newsgroup documents, partitioned (nearly) evenly across 20 different
    newsgroups. To the best of my knowledge, it was originally collected
    by Ken Lang, probably for his Newsweeder: Learning to filter netnews
    paper, though he does not explicitly mention this collection. The 20
    newsgroups collection has become a popular data set for experiments
    in text applications of machine learning techniques, such as text
    classification and text clustering.
This dataset loader will download the recommended "by date" variant of the
dataset and which features a point in time split between the train and
test sets. The compressed dataset size is around 14 Mb compressed. Once
uncompressed the train set is 52 MB and the test set is 34 MB.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import codecs
import logging
import os
import pickle
import re
import shutil
import tarfile
from contextlib import suppress
from numbers import Integral, Real
import joblib
import numpy as np
import scipy.sparse as sp
from .. import preprocessing
from ..feature_extraction.text import CountVectorizer
from ..utils import Bunch, check_random_state
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.fixes import tarfile_extractall
from . import get_data_home, load_files
from ._base import (
    RemoteFileMetadata,
    _convert_data_dataframe,
    _fetch_remote,
    _pkl_filepath,
    load_descr,
)
logger = logging.getLogger(__name__)
# The original data can be found at:
# https://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
ARCHIVE = RemoteFileMetadata(
    filename="20news-bydate.tar.gz",
    url="https://ndownloader.figshare.com/files/5975967",
    checksum="8f1b2514ca22a5ade8fbb9cfa5727df95fa587f4c87b786e15c759fa66d95610",
)
CACHE_NAME = "20news-bydate.pkz"
TRAIN_FOLDER = "20news-bydate-train"
TEST_FOLDER = "20news-bydate-test"
def _download_20newsgroups(target_dir, cache_path, n_retries, delay):
    """Download the 20 newsgroups data and stored it as a zipped pickle."""
    train_path = os.path.join(target_dir, TRAIN_FOLDER)
    test_path = os.path.join(target_dir, TEST_FOLDER)
    os.makedirs(target_dir, exist_ok=True)
    logger.info("Downloading dataset from %s (14 MB)", ARCHIVE.url)
    archive_path = _fetch_remote(
        ARCHIVE, dirname=target_dir, n_retries=n_retries, delay=delay
    )
    logger.debug("Decompressing %s", archive_path)
    with tarfile.open(archive_path, "r:gz") as fp:
        tarfile_extractall(fp, path=target_dir)
    with suppress(FileNotFoundError):
        os.remove(archive_path)
    # Store a zipped pickle
    cache = dict(
        train=load_files(train_path, encoding="latin1"),
        test=load_files(test_path, encoding="latin1"),
    )
    compressed_content = codecs.encode(pickle.dumps(cache), "zlib_codec")
    with open(cache_path, "wb") as f:
        f.write(compressed_content)
    shutil.rmtree(target_dir)
    return cache
def strip_newsgroup_header(text):
    """
    Given text in "news" format, strip the headers, by removing everything
    before the first blank line.
    Parameters
    ----------
    text : str
        The text from which to remove the signature block.
    """
    _before, _blankline, after = text.partition("\n\n")
    return after
_QUOTE_RE = re.compile(
    r"(writes in|writes:|wrote:|says:|said:|^In article|^Quoted from|^\||^>)"
)
def strip_newsgroup_quoting(text):
    """
    Given text in "news" format, strip lines beginning with the quote
    characters > or |, plus lines that often introduce a quoted section
    (for example, because they contain the string 'writes:'.)
    Parameters
    ----------
    text : str
        The text from which to remove the signature block.
    """
    good_lines = [line for line in text.split("\n") if not _QUOTE_RE.search(line)]
    return "\n".join(good_lines)
def strip_newsgroup_footer(text):
    """
    Given text in "news" format, attempt to remove a signature block.
    As a rough heuristic, we assume that signatures are set apart by either
    a blank line or a line made of hyphens, and that it is the last such line
    in the file (disregarding blank lines at the end).
    Parameters
    ----------
    text : str
        The text from which to remove the signature block.
    """
    lines = text.strip().split("\n")
    for line_num in range(len(lines) - 1, -1, -1):
        line = lines[line_num]
        if line.strip().strip("-") == "":
            break
    if line_num > 0:
        return "\n".join(lines[:line_num])
    else:
        return text
@validate_params(
    {
        "data_home": [str, os.PathLike, None],
        "subset": [StrOptions({"train", "test", "all"})],
        "categories": ["array-like", None],
        "shuffle": ["boolean"],
        "random_state": ["random_state"],
        "remove": [tuple],
        "download_if_missing": ["boolean"],
        "return_X_y": ["boolean"],
        "n_retries": [Interval(Integral, 1, None, closed="left")],
        "delay": [Interval(Real, 0.0, None, closed="neither")],
    },
    prefer_skip_nested_validation=True,
)
def fetch_20newsgroups(
    *,
    data_home=None,
    subset="train",
    categories=None,
    shuffle=True,
    random_state=42,
    remove=(),
    download_if_missing=True,
    return_X_y=False,
    n_retries=3,
    delay=1.0,
):
    """Load the filenames and data from the 20 newsgroups dataset \
(classification).
    Download it if necessary.
    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality               1
    Features                  text
    =================   ==========
    Read more in the :ref:`User Guide <20newsgroups_dataset>`.
    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify a download and cache folder for the datasets. If None,
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
    subset : {'train', 'test', 'all'}, default='train'
        Select the dataset to load: 'train' for the training set, 'test'
        for the test set, 'all' for both, with shuffled ordering.
    categories : array-like, dtype=str, default=None
        If None (default), load all the categories.
        If not None, list of category names to load (other categories
        ignored).
    shuffle : bool, default=True
        Whether or not to shuffle the data: might be important for models that
        make the assumption that the samples are independent and identically
        distributed (i.i.d.), such as stochastic gradient descent.
    random_state : int, RandomState instance or None, default=42
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.
    remove : tuple, default=()
        May contain any subset of ('headers', 'footers', 'quotes'). Each of
        these are kinds of text that will be detected and removed from the
        newsgroup posts, preventing classifiers from overfitting on
        metadata.
        'headers' removes newsgroup headers, 'footers' removes blocks at the
        ends of posts that look like signatures, and 'quotes' removes lines
        that appear to be quoting another post.
        'headers' follows an exact standard; the other filters are not always
        correct.
    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.
    return_X_y : bool, default=False
        If True, returns `(data.data, data.target)` instead of a Bunch
        object.
        .. versionadded:: 0.22
    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.
        .. versionadded:: 1.5
    delay : float, default=1.0
        Number of seconds between retries.
        .. versionadded:: 1.5
    Returns
    -------
    bunch : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        data : list of shape (n_samples,)
            The data list to learn.
        target: ndarray of shape (n_samples,)
            The target labels.
        filenames: list of shape (n_samples,)
            The path to the location of the data.
        DESCR: str
            The full description of the dataset.
        target_names: list of shape (n_classes,)
            The names of target classes.
    (data, target) : tuple if `return_X_y=True`
        A tuple of two ndarrays. The first contains a 2D array of shape
        (n_samples, n_classes) with each row representing one sample and each
        column representing the features. The second array of shape
        (n_samples,) contains the target samples.
        .. versionadded:: 0.22
    Examples
    --------
    >>> from sklearn.datasets import fetch_20newsgroups
    >>> cats = ['alt.atheism', 'sci.space']
    >>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)
    >>> list(newsgroups_train.target_names)
    ['alt.atheism', 'sci.space']
    >>> newsgroups_train.filenames.shape
    (1073,)
    >>> newsgroups_train.target.shape
    (1073,)
    >>> newsgroups_train.target[:10]
    array([0, 1, 1, 1, 0, 1, 1, 0, 0, 0])
    """
    data_home = get_data_home(data_home=data_home)
    cache_path = _pkl_filepath(data_home, CACHE_NAME)
    twenty_home = os.path.join(data_home, "20news_home")
    cache = None
    if os.path.exists(cache_path):
        try:
            with open(cache_path, "rb") as f:
                compressed_content = f.read()
            uncompressed_content = codecs.decode(compressed_content, "zlib_codec")
            cache = pickle.loads(uncompressed_content)
        except Exception as e:
            print(80 * "_")
            print("Cache loading failed")
            print(80 * "_")
            print(e)
    if cache is None:
        if download_if_missing:
            logger.info("Downloading 20news dataset. This may take a few minutes.")
            cache = _download_20newsgroups(
                target_dir=twenty_home,
                cache_path=cache_path,
                n_retries=n_retries,
                delay=delay,
            )
        else:
            raise OSError("20Newsgroups dataset not found")
    if subset in ("train", "test"):
        data = cache[subset]
    elif subset == "all":
        data_lst = list()
        target = list()
        filenames = list()
        for subset in ("train", "test"):
            data = cache[subset]
            data_lst.extend(data.data)
            target.extend(data.target)
            filenames.extend(data.filenames)
        data.data = data_lst
        data.target = np.array(target)
        data.filenames = np.array(filenames)
    fdescr = load_descr("twenty_newsgroups.rst")
    data.DESCR = fdescr
    if "headers" in remove:
        data.data = [strip_newsgroup_header(text) for text in data.data]
    if "footers" in remove:
        data.data = [strip_newsgroup_footer(text) for text in data.data]
    if "quotes" in remove:
        data.data = [strip_newsgroup_quoting(text) for text in data.data]
    if categories is not None:
        labels = [(data.target_names.index(cat), cat) for cat in categories]
        # Sort the categories to have the ordering of the labels
        labels.sort()
        labels, categories = zip(*labels)
        mask = np.isin(data.target, labels)
        data.filenames = data.filenames[mask]
        data.target = data.target[mask]
        # searchsorted to have continuous labels
        data.target = np.searchsorted(labels, data.target)
        data.target_names = list(categories)
        # Use an object array to shuffle: avoids memory copy
        data_lst = np.array(data.data, dtype=object)
        data_lst = data_lst[mask]
        data.data = data_lst.tolist()
    if shuffle:
        random_state = check_random_state(random_state)
        indices = np.arange(data.target.shape[0])
        random_state.shuffle(indices)
        data.filenames = data.filenames[indices]
        data.target = data.target[indices]
        # Use an object array to shuffle: avoids memory copy
        data_lst = np.array(data.data, dtype=object)
        data_lst = data_lst[indices]
        data.data = data_lst.tolist()
    if return_X_y:
        return data.data, data.target
    return data
@validate_params(
    {
        "subset": [StrOptions({"train", "test", "all"})],
        "remove": [tuple],
        "data_home": [str, os.PathLike, None],
        "download_if_missing": ["boolean"],
        "return_X_y": ["boolean"],
        "normalize": ["boolean"],
        "as_frame": ["boolean"],
        "n_retries": [Interval(Integral, 1, None, closed="left")],
        "delay": [Interval(Real, 0.0, None, closed="neither")],
    },
    prefer_skip_nested_validation=True,
)
def fetch_20newsgroups_vectorized(
    *,
    subset="train",
    remove=(),
    data_home=None,
    download_if_missing=True,
    return_X_y=False,
    normalize=True,
    as_frame=False,
    n_retries=3,
    delay=1.0,
):
    """Load and vectorize the 20 newsgroups dataset (classification).
    Download it if necessary.
    This is a convenience function; the transformation is done using the
    default settings for
    :class:`~sklearn.feature_extraction.text.CountVectorizer`. For more
    advanced usage (stopword filtering, n-gram extraction, etc.), combine
    fetch_20newsgroups with a custom
    :class:`~sklearn.feature_extraction.text.CountVectorizer`,
    :class:`~sklearn.feature_extraction.text.HashingVectorizer`,
    :class:`~sklearn.feature_extraction.text.TfidfTransformer` or
    :class:`~sklearn.feature_extraction.text.TfidfVectorizer`.
    The resulting counts are normalized using
    :func:`sklearn.preprocessing.normalize` unless normalize is set to False.
    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality          130107
    Features                  real
    =================   ==========
    Read more in the :ref:`User Guide <20newsgroups_dataset>`.
    Parameters
    ----------
    subset : {'train', 'test', 'all'}, default='train'
        Select the dataset to load: 'train' for the training set, 'test'
        for the test set, 'all' for both, with shuffled ordering.
    remove : tuple, default=()
        May contain any subset of ('headers', 'footers', 'quotes'). Each of
        these are kinds of text that will be detected and removed from the
        newsgroup posts, preventing classifiers from overfitting on
        metadata.
        'headers' removes newsgroup headers, 'footers' removes blocks at the
        ends of posts that look like signatures, and 'quotes' removes lines
        that appear to be quoting another post.
    data_home : str or path-like, default=None
        Specify an download and cache folder for the datasets. If None,
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.
    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.
        .. versionadded:: 0.20
    normalize : bool, default=True
        If True, normalizes each document's feature vector to unit norm using
        :func:`sklearn.preprocessing.normalize`.
        .. versionadded:: 0.22
    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string, or categorical). The target is
        a pandas DataFrame or Series depending on the number of
        `target_columns`.
        .. versionadded:: 0.24
    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.
        .. versionadded:: 1.5
    delay : float, default=1.0
        Number of seconds between retries.
        .. versionadded:: 1.5
    Returns
    -------
    bunch : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        data: {sparse matrix, dataframe} of shape (n_samples, n_features)
            The input data matrix. If ``as_frame`` is `True`, ``data`` is
            a pandas DataFrame with sparse columns.
        target: {ndarray, series} of shape (n_samples,)
            The target labels. If ``as_frame`` is `True`, ``target`` is a
            pandas Series.
        target_names: list of shape (n_classes,)
            The names of target classes.
        DESCR: str
            The full description of the dataset.
        frame: dataframe of shape (n_samples, n_features + 1)
            Only present when `as_frame=True`. Pandas DataFrame with ``data``
            and ``target``.
            .. versionadded:: 0.24
    (data, target) : tuple if ``return_X_y`` is True
        `data` and `target` would be of the format defined in the `Bunch`
        description above.
        .. versionadded:: 0.20
    Examples
    --------
    >>> from sklearn.datasets import fetch_20newsgroups_vectorized
    >>> newsgroups_vectorized = fetch_20newsgroups_vectorized(subset='test')
    >>> newsgroups_vectorized.data.shape
    (7532, 130107)
    >>> newsgroups_vectorized.target.shape
    (7532,)
    """
    data_home = get_data_home(data_home=data_home)
    filebase = "20newsgroup_vectorized"
    if remove:
        filebase += "remove-" + "-".join(remove)
    target_file = _pkl_filepath(data_home, filebase + ".pkl")
    # we shuffle but use a fixed seed for the memoization
    data_train = fetch_20newsgroups(
        data_home=data_home,
        subset="train",
        categories=None,
        shuffle=True,
        random_state=12,
        remove=remove,
        download_if_missing=download_if_missing,
        n_retries=n_retries,
        delay=delay,
    )
    data_test = fetch_20newsgroups(
        data_home=data_home,
        subset="test",
        categories=None,
        shuffle=True,
        random_state=12,
        remove=remove,
        download_if_missing=download_if_missing,
        n_retries=n_retries,
        delay=delay,
    )
    if os.path.exists(target_file):
        try:
            X_train, X_test, feature_names = joblib.load(target_file)
        except ValueError as e:
            raise ValueError(
                f"The cached dataset located in {target_file} was fetched "
                "with an older scikit-learn version and it is not compatible "
                "with the scikit-learn version imported. You need to "
                f"manually delete the file: {target_file}."
            ) from e
    else:
        vectorizer = CountVectorizer(dtype=np.int16)
        X_train = vectorizer.fit_transform(data_train.data).tocsr()
        X_test = vectorizer.transform(data_test.data).tocsr()
        feature_names = vectorizer.get_feature_names_out()
        joblib.dump((X_train, X_test, feature_names), target_file, compress=9)
    # the data is stored as int16 for compactness
    # but normalize needs floats
    if normalize:
        X_train = X_train.astype(np.float64)
        X_test = X_test.astype(np.float64)
        preprocessing.normalize(X_train, copy=False)
        preprocessing.normalize(X_test, copy=False)
    target_names = data_train.target_names
    if subset == "train":
        data = X_train
        target = data_train.target
    elif subset == "test":
        data = X_test
        target = data_test.target
    elif subset == "all":
        data = sp.vstack((X_train, X_test)).tocsr()
        target = np.concatenate((data_train.target, data_test.target))
    fdescr = load_descr("twenty_newsgroups.rst")
    frame = None
    target_name = ["category_class"]
    if as_frame:
        frame, data, target = _convert_data_dataframe(
            "fetch_20newsgroups_vectorized",
            data,
            target,
            feature_names,
            target_names=target_name,
            sparse_data=True,
        )
    if return_X_y:
        return data, target
    return Bunch(
        data=data,
        target=target,
        frame=frame,
        target_names=target_names,
        feature_names=feature_names,
        DESCR=fdescr,
    )
 |