File: __init__.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (54 lines) | stat: -rw-r--r-- 1,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""Matrix decomposition algorithms.

These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be
regarded as dimensionality reduction techniques.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

from ..utils.extmath import randomized_svd
from ._dict_learning import (
    DictionaryLearning,
    MiniBatchDictionaryLearning,
    SparseCoder,
    dict_learning,
    dict_learning_online,
    sparse_encode,
)
from ._factor_analysis import FactorAnalysis
from ._fastica import FastICA, fastica
from ._incremental_pca import IncrementalPCA
from ._kernel_pca import KernelPCA
from ._lda import LatentDirichletAllocation
from ._nmf import (
    NMF,
    MiniBatchNMF,
    non_negative_factorization,
)
from ._pca import PCA
from ._sparse_pca import MiniBatchSparsePCA, SparsePCA
from ._truncated_svd import TruncatedSVD

__all__ = [
    "NMF",
    "PCA",
    "DictionaryLearning",
    "FactorAnalysis",
    "FastICA",
    "IncrementalPCA",
    "KernelPCA",
    "LatentDirichletAllocation",
    "MiniBatchDictionaryLearning",
    "MiniBatchNMF",
    "MiniBatchSparsePCA",
    "SparseCoder",
    "SparsePCA",
    "TruncatedSVD",
    "dict_learning",
    "dict_learning_online",
    "fastica",
    "non_negative_factorization",
    "randomized_svd",
    "sparse_encode",
]