1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
"""Factor Analysis.
A latent linear variable model.
FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
While PCA assumes Gaussian noise with the same variance for each
feature, the FactorAnalysis model assumes different variances for
each of them.
This implementation is based on David Barber's Book,
Bayesian Reasoning and Machine Learning,
http://www.cs.ucl.ac.uk/staff/d.barber/brml,
Algorithm 21.1
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from math import log, sqrt
from numbers import Integral, Real
import numpy as np
from scipy import linalg
from ..base import (
BaseEstimator,
ClassNamePrefixFeaturesOutMixin,
TransformerMixin,
_fit_context,
)
from ..exceptions import ConvergenceWarning
from ..utils import check_random_state
from ..utils._param_validation import Interval, StrOptions
from ..utils.extmath import _randomized_svd, fast_logdet, squared_norm
from ..utils.validation import check_is_fitted, validate_data
class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Factor Analysis (FA).
A simple linear generative model with Gaussian latent variables.
The observations are assumed to be caused by a linear transformation of
lower dimensional latent factors and added Gaussian noise.
Without loss of generality the factors are distributed according to a
Gaussian with zero mean and unit covariance. The noise is also zero mean
and has an arbitrary diagonal covariance matrix.
If we would restrict the model further, by assuming that the Gaussian
noise is even isotropic (all diagonal entries are the same) we would obtain
:class:`PCA`.
FactorAnalysis performs a maximum likelihood estimate of the so-called
`loading` matrix, the transformation of the latent variables to the
observed ones, using SVD based approach.
Read more in the :ref:`User Guide <FA>`.
.. versionadded:: 0.13
Parameters
----------
n_components : int, default=None
Dimensionality of latent space, the number of components
of ``X`` that are obtained after ``transform``.
If None, n_components is set to the number of features.
tol : float, default=1e-2
Stopping tolerance for log-likelihood increase.
copy : bool, default=True
Whether to make a copy of X. If ``False``, the input X gets overwritten
during fitting.
max_iter : int, default=1000
Maximum number of iterations.
noise_variance_init : array-like of shape (n_features,), default=None
The initial guess of the noise variance for each feature.
If None, it defaults to np.ones(n_features).
svd_method : {'lapack', 'randomized'}, default='randomized'
Which SVD method to use. If 'lapack' use standard SVD from
scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
Defaults to 'randomized'. For most applications 'randomized' will
be sufficiently precise while providing significant speed gains.
Accuracy can also be improved by setting higher values for
`iterated_power`. If this is not sufficient, for maximum precision
you should choose 'lapack'.
iterated_power : int, default=3
Number of iterations for the power method. 3 by default. Only used
if ``svd_method`` equals 'randomized'.
rotation : {'varimax', 'quartimax'}, default=None
If not None, apply the indicated rotation. Currently, varimax and
quartimax are implemented. See
`"The varimax criterion for analytic rotation in factor analysis"
<https://link.springer.com/article/10.1007%2FBF02289233>`_
H. F. Kaiser, 1958.
.. versionadded:: 0.24
random_state : int or RandomState instance, default=0
Only used when ``svd_method`` equals 'randomized'. Pass an int for
reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Components with maximum variance.
loglike_ : list of shape (n_iterations,)
The log likelihood at each iteration.
noise_variance_ : ndarray of shape (n_features,)
The estimated noise variance for each feature.
n_iter_ : int
Number of iterations run.
mean_ : ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
PCA: Principal component analysis is also a latent linear variable model
which however assumes equal noise variance for each feature.
This extra assumption makes probabilistic PCA faster as it can be
computed in closed form.
FastICA: Independent component analysis, a latent variable model with
non-Gaussian latent variables.
References
----------
- David Barber, Bayesian Reasoning and Machine Learning,
Algorithm 21.1.
- Christopher M. Bishop: Pattern Recognition and Machine Learning,
Chapter 12.2.4.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import FactorAnalysis
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = FactorAnalysis(n_components=7, random_state=0)
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)
"""
_parameter_constraints: dict = {
"n_components": [Interval(Integral, 0, None, closed="left"), None],
"tol": [Interval(Real, 0.0, None, closed="left")],
"copy": ["boolean"],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"noise_variance_init": ["array-like", None],
"svd_method": [StrOptions({"randomized", "lapack"})],
"iterated_power": [Interval(Integral, 0, None, closed="left")],
"rotation": [StrOptions({"varimax", "quartimax"}), None],
"random_state": ["random_state"],
}
def __init__(
self,
n_components=None,
*,
tol=1e-2,
copy=True,
max_iter=1000,
noise_variance_init=None,
svd_method="randomized",
iterated_power=3,
rotation=None,
random_state=0,
):
self.n_components = n_components
self.copy = copy
self.tol = tol
self.max_iter = max_iter
self.svd_method = svd_method
self.noise_variance_init = noise_variance_init
self.iterated_power = iterated_power
self.random_state = random_state
self.rotation = rotation
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the FactorAnalysis model to X using SVD based approach.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : Ignored
Ignored parameter.
Returns
-------
self : object
FactorAnalysis class instance.
"""
X = validate_data(
self, X, copy=self.copy, dtype=np.float64, force_writeable=True
)
n_samples, n_features = X.shape
n_components = self.n_components
if n_components is None:
n_components = n_features
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
# some constant terms
nsqrt = sqrt(n_samples)
llconst = n_features * log(2.0 * np.pi) + n_components
var = np.var(X, axis=0)
if self.noise_variance_init is None:
psi = np.ones(n_features, dtype=X.dtype)
else:
if len(self.noise_variance_init) != n_features:
raise ValueError(
"noise_variance_init dimension does not "
"with number of features : %d != %d"
% (len(self.noise_variance_init), n_features)
)
psi = np.array(self.noise_variance_init)
loglike = []
old_ll = -np.inf
SMALL = 1e-12
# we'll modify svd outputs to return unexplained variance
# to allow for unified computation of loglikelihood
if self.svd_method == "lapack":
def my_svd(X):
_, s, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
return (
s[:n_components],
Vt[:n_components],
squared_norm(s[n_components:]),
)
else: # svd_method == "randomized"
random_state = check_random_state(self.random_state)
def my_svd(X):
_, s, Vt = _randomized_svd(
X,
n_components,
random_state=random_state,
n_iter=self.iterated_power,
)
return s, Vt, squared_norm(X) - squared_norm(s)
for i in range(self.max_iter):
# SMALL helps numerics
sqrt_psi = np.sqrt(psi) + SMALL
s, Vt, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
s **= 2
# Use 'maximum' here to avoid sqrt problems.
W = np.sqrt(np.maximum(s - 1.0, 0.0))[:, np.newaxis] * Vt
del Vt
W *= sqrt_psi
# loglikelihood
ll = llconst + np.sum(np.log(s))
ll += unexp_var + np.sum(np.log(psi))
ll *= -n_samples / 2.0
loglike.append(ll)
if (ll - old_ll) < self.tol:
break
old_ll = ll
psi = np.maximum(var - np.sum(W**2, axis=0), SMALL)
else:
warnings.warn(
"FactorAnalysis did not converge."
" You might want"
" to increase the number of iterations.",
ConvergenceWarning,
)
self.components_ = W
if self.rotation is not None:
self.components_ = self._rotate(W)
self.noise_variance_ = psi
self.loglike_ = loglike
self.n_iter_ = i + 1
return self
def transform(self, X):
"""Apply dimensionality reduction to X using the model.
Compute the expected mean of the latent variables.
See Barber, 21.2.33 (or Bishop, 12.66).
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
The latent variables of X.
"""
check_is_fitted(self)
X = validate_data(self, X, reset=False)
Ih = np.eye(len(self.components_))
X_transformed = X - self.mean_
Wpsi = self.components_ / self.noise_variance_
cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
tmp = np.dot(X_transformed, Wpsi.T)
X_transformed = np.dot(tmp, cov_z)
return X_transformed
def get_covariance(self):
"""Compute data covariance with the FactorAnalysis model.
``cov = components_.T * components_ + diag(noise_variance)``
Returns
-------
cov : ndarray of shape (n_features, n_features)
Estimated covariance of data.
"""
check_is_fitted(self)
cov = np.dot(self.components_.T, self.components_)
cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace
return cov
def get_precision(self):
"""Compute data precision matrix with the FactorAnalysis model.
Returns
-------
precision : ndarray of shape (n_features, n_features)
Estimated precision of data.
"""
check_is_fitted(self)
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components == 0:
return np.diag(1.0 / self.noise_variance_)
if self.n_components == n_features:
return linalg.inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
precision = np.dot(components_ / self.noise_variance_, components_.T)
precision.flat[:: len(precision) + 1] += 1.0
precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_))
precision /= self.noise_variance_[:, np.newaxis]
precision /= -self.noise_variance_[np.newaxis, :]
precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_
return precision
def score_samples(self, X):
"""Compute the log-likelihood of each sample.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The data.
Returns
-------
ll : ndarray of shape (n_samples,)
Log-likelihood of each sample under the current model.
"""
check_is_fitted(self)
X = validate_data(self, X, reset=False)
Xr = X - self.mean_
precision = self.get_precision()
n_features = X.shape[1]
log_like = -0.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Compute the average log-likelihood of the samples.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The data.
y : Ignored
Ignored parameter.
Returns
-------
ll : float
Average log-likelihood of the samples under the current model.
"""
return np.mean(self.score_samples(X))
def _rotate(self, components, n_components=None, tol=1e-6):
"Rotate the factor analysis solution."
# note that tol is not exposed
return _ortho_rotation(components.T, method=self.rotation, tol=tol)[
: self.n_components
]
@property
def _n_features_out(self):
"""Number of transformed output features."""
return self.components_.shape[0]
def _ortho_rotation(components, method="varimax", tol=1e-6, max_iter=100):
"""Return rotated components."""
nrow, ncol = components.shape
rotation_matrix = np.eye(ncol)
var = 0
for _ in range(max_iter):
comp_rot = np.dot(components, rotation_matrix)
if method == "varimax":
tmp = comp_rot * np.transpose((comp_rot**2).sum(axis=0) / nrow)
elif method == "quartimax":
tmp = 0
u, s, v = np.linalg.svd(np.dot(components.T, comp_rot**3 - tmp))
rotation_matrix = np.dot(u, v)
var_new = np.sum(s)
if var != 0 and var_new < var * (1 + tol):
break
var = var_new
return np.dot(components, rotation_matrix).T
|