File: _aliases.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (156 lines) | stat: -rw-r--r-- 4,842 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import annotations

from typing import Optional

import cupy as cp

from ..common import _aliases, _helpers
from ..common._typing import NestedSequence, SupportsBufferProtocol
from .._internal import get_xp
from ._info import __array_namespace_info__
from ._typing import Array, Device, DType

bool = cp.bool_

# Basic renames
acos = cp.arccos
acosh = cp.arccosh
asin = cp.arcsin
asinh = cp.arcsinh
atan = cp.arctan
atan2 = cp.arctan2
atanh = cp.arctanh
bitwise_left_shift = cp.left_shift
bitwise_invert = cp.invert
bitwise_right_shift = cp.right_shift
concat = cp.concatenate
pow = cp.power

arange = get_xp(cp)(_aliases.arange)
empty = get_xp(cp)(_aliases.empty)
empty_like = get_xp(cp)(_aliases.empty_like)
eye = get_xp(cp)(_aliases.eye)
full = get_xp(cp)(_aliases.full)
full_like = get_xp(cp)(_aliases.full_like)
linspace = get_xp(cp)(_aliases.linspace)
ones = get_xp(cp)(_aliases.ones)
ones_like = get_xp(cp)(_aliases.ones_like)
zeros = get_xp(cp)(_aliases.zeros)
zeros_like = get_xp(cp)(_aliases.zeros_like)
UniqueAllResult = get_xp(cp)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(cp)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(cp)(_aliases.UniqueInverseResult)
unique_all = get_xp(cp)(_aliases.unique_all)
unique_counts = get_xp(cp)(_aliases.unique_counts)
unique_inverse = get_xp(cp)(_aliases.unique_inverse)
unique_values = get_xp(cp)(_aliases.unique_values)
std = get_xp(cp)(_aliases.std)
var = get_xp(cp)(_aliases.var)
cumulative_sum = get_xp(cp)(_aliases.cumulative_sum)
cumulative_prod = get_xp(cp)(_aliases.cumulative_prod)
clip = get_xp(cp)(_aliases.clip)
permute_dims = get_xp(cp)(_aliases.permute_dims)
reshape = get_xp(cp)(_aliases.reshape)
argsort = get_xp(cp)(_aliases.argsort)
sort = get_xp(cp)(_aliases.sort)
nonzero = get_xp(cp)(_aliases.nonzero)
ceil = get_xp(cp)(_aliases.ceil)
floor = get_xp(cp)(_aliases.floor)
trunc = get_xp(cp)(_aliases.trunc)
matmul = get_xp(cp)(_aliases.matmul)
matrix_transpose = get_xp(cp)(_aliases.matrix_transpose)
tensordot = get_xp(cp)(_aliases.tensordot)
sign = get_xp(cp)(_aliases.sign)
finfo = get_xp(cp)(_aliases.finfo)
iinfo = get_xp(cp)(_aliases.iinfo)


# asarray also adds the copy keyword, which is not present in numpy 1.0.
def asarray(
    obj: (
        Array 
        | bool | int | float | complex 
        | NestedSequence[bool | int | float | complex] 
        | SupportsBufferProtocol
    ),
    /,
    *,
    dtype: Optional[DType] = None,
    device: Optional[Device] = None,
    copy: Optional[bool] = None,
    **kwargs,
) -> Array:
    """
    Array API compatibility wrapper for asarray().

    See the corresponding documentation in the array library and/or the array API
    specification for more details.
    """
    with cp.cuda.Device(device):
        if copy is None:
            return cp.asarray(obj, dtype=dtype, **kwargs)
        else:
            res = cp.array(obj, dtype=dtype, copy=copy, **kwargs)
            if not copy and res is not obj:
                raise ValueError("Unable to avoid copy while creating an array as requested")
            return res


def astype(
    x: Array,
    dtype: DType,
    /,
    *,
    copy: bool = True,
    device: Optional[Device] = None,
) -> Array:
    if device is None:
        return x.astype(dtype=dtype, copy=copy)
    out = _helpers.to_device(x.astype(dtype=dtype, copy=False), device)
    return out.copy() if copy and out is x else out


# cupy.count_nonzero does not have keepdims
def count_nonzero(
    x: Array,
    axis=None,
    keepdims=False
) -> Array:
   result = cp.count_nonzero(x, axis)
   if keepdims:
       if axis is None:
            return cp.reshape(result, [1]*x.ndim)
       return cp.expand_dims(result, axis)
   return result


# take_along_axis: axis defaults to -1 but in cupy (and numpy) axis is a required arg
def take_along_axis(x: Array, indices: Array, /, *, axis: int = -1):
    return cp.take_along_axis(x, indices, axis=axis)


# These functions are completely new here. If the library already has them
# (i.e., numpy 2.0), use the library version instead of our wrapper.
if hasattr(cp, 'vecdot'):
    vecdot = cp.vecdot
else:
    vecdot = get_xp(cp)(_aliases.vecdot)

if hasattr(cp, 'isdtype'):
    isdtype = cp.isdtype
else:
    isdtype = get_xp(cp)(_aliases.isdtype)

if hasattr(cp, 'unstack'):
    unstack = cp.unstack
else:
    unstack = get_xp(cp)(_aliases.unstack)

__all__ = _aliases.__all__ + ['__array_namespace_info__', 'asarray', 'astype',
                              'acos', 'acosh', 'asin', 'asinh', 'atan',
                              'atan2', 'atanh', 'bitwise_left_shift',
                              'bitwise_invert', 'bitwise_right_shift',
                              'bool', 'concat', 'count_nonzero', 'pow', 'sign',
                              'take_along_axis']

_all_ignore = ['cp', 'get_xp']