File: _info.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (369 lines) | stat: -rw-r--r-- 11,889 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""
Array API Inspection namespace

This is the namespace for inspection functions as defined by the array API
standard. See
https://data-apis.org/array-api/latest/API_specification/inspection.html for
more details.

"""
import torch

from functools import cache

class __array_namespace_info__:
    """
    Get the array API inspection namespace for PyTorch.

    The array API inspection namespace defines the following functions:

    - capabilities()
    - default_device()
    - default_dtypes()
    - dtypes()
    - devices()

    See
    https://data-apis.org/array-api/latest/API_specification/inspection.html
    for more details.

    Returns
    -------
    info : ModuleType
        The array API inspection namespace for PyTorch.

    Examples
    --------
    >>> info = xp.__array_namespace_info__()
    >>> info.default_dtypes()
    {'real floating': numpy.float64,
     'complex floating': numpy.complex128,
     'integral': numpy.int64,
     'indexing': numpy.int64}

    """

    __module__ = 'torch'

    def capabilities(self):
        """
        Return a dictionary of array API library capabilities.

        The resulting dictionary has the following keys:

        - **"boolean indexing"**: boolean indicating whether an array library
          supports boolean indexing. Always ``True`` for PyTorch.

        - **"data-dependent shapes"**: boolean indicating whether an array
          library supports data-dependent output shapes. Always ``True`` for
          PyTorch.

        See
        https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
        for more details.

        See Also
        --------
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Returns
        -------
        capabilities : dict
            A dictionary of array API library capabilities.

        Examples
        --------
        >>> info = xp.__array_namespace_info__()
        >>> info.capabilities()
        {'boolean indexing': True,
         'data-dependent shapes': True,
         'max dimensions': 64}

        """
        return {
            "boolean indexing": True,
            "data-dependent shapes": True,
            "max dimensions": 64,
        }

    def default_device(self):
        """
        The default device used for new PyTorch arrays.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Returns
        -------
        device : Device
            The default device used for new PyTorch arrays.

        Examples
        --------
        >>> info = xp.__array_namespace_info__()
        >>> info.default_device()
        device(type='cpu')

        Notes
        -----
        This method returns the static default device when PyTorch is initialized.
        However, the *current* device used by creation functions (``empty`` etc.)
        can be changed at runtime.

        See Also
        --------
        https://github.com/data-apis/array-api/issues/835
        """
        return torch.device("cpu")

    def default_dtypes(self, *, device=None):
        """
        The default data types used for new PyTorch arrays.

        Parameters
        ----------
        device : Device, optional
            The device to get the default data types for.
            Unused for PyTorch, as all devices use the same default dtypes.

        Returns
        -------
        dtypes : dict
            A dictionary describing the default data types used for new PyTorch
            arrays.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Examples
        --------
        >>> info = xp.__array_namespace_info__()
        >>> info.default_dtypes()
        {'real floating': torch.float32,
         'complex floating': torch.complex64,
         'integral': torch.int64,
         'indexing': torch.int64}

        """
        # Note: if the default is set to float64, the devices like MPS that
        # don't support float64 will error. We still return the default_dtype
        # value here because this error doesn't represent a different default
        # per-device.
        default_floating = torch.get_default_dtype()
        default_complex = torch.complex64 if default_floating == torch.float32 else torch.complex128
        default_integral = torch.int64
        return {
            "real floating": default_floating,
            "complex floating": default_complex,
            "integral": default_integral,
            "indexing": default_integral,
        }


    def _dtypes(self, kind):
        bool = torch.bool
        int8 = torch.int8
        int16 = torch.int16
        int32 = torch.int32
        int64 = torch.int64
        uint8 = torch.uint8
        # uint16, uint32, and uint64 are present in newer versions of pytorch,
        # but they aren't generally supported by the array API functions, so
        # we omit them from this function.
        float32 = torch.float32
        float64 = torch.float64
        complex64 = torch.complex64
        complex128 = torch.complex128

        if kind is None:
            return {
                "bool": bool,
                "int8": int8,
                "int16": int16,
                "int32": int32,
                "int64": int64,
                "uint8": uint8,
                "float32": float32,
                "float64": float64,
                "complex64": complex64,
                "complex128": complex128,
            }
        if kind == "bool":
            return {"bool": bool}
        if kind == "signed integer":
            return {
                "int8": int8,
                "int16": int16,
                "int32": int32,
                "int64": int64,
            }
        if kind == "unsigned integer":
            return {
                "uint8": uint8,
            }
        if kind == "integral":
            return {
                "int8": int8,
                "int16": int16,
                "int32": int32,
                "int64": int64,
                "uint8": uint8,
            }
        if kind == "real floating":
            return {
                "float32": float32,
                "float64": float64,
            }
        if kind == "complex floating":
            return {
                "complex64": complex64,
                "complex128": complex128,
            }
        if kind == "numeric":
            return {
                "int8": int8,
                "int16": int16,
                "int32": int32,
                "int64": int64,
                "uint8": uint8,
                "float32": float32,
                "float64": float64,
                "complex64": complex64,
                "complex128": complex128,
            }
        if isinstance(kind, tuple):
            res = {}
            for k in kind:
                res.update(self.dtypes(kind=k))
            return res
        raise ValueError(f"unsupported kind: {kind!r}")

    @cache
    def dtypes(self, *, device=None, kind=None):
        """
        The array API data types supported by PyTorch.

        Note that this function only returns data types that are defined by
        the array API.

        Parameters
        ----------
        device : Device, optional
            The device to get the data types for.
            Unused for PyTorch, as all devices use the same dtypes.
        kind : str or tuple of str, optional
            The kind of data types to return. If ``None``, all data types are
            returned. If a string, only data types of that kind are returned.
            If a tuple, a dictionary containing the union of the given kinds
            is returned. The following kinds are supported:

            - ``'bool'``: boolean data types (i.e., ``bool``).
            - ``'signed integer'``: signed integer data types (i.e., ``int8``,
              ``int16``, ``int32``, ``int64``).
            - ``'unsigned integer'``: unsigned integer data types (i.e.,
              ``uint8``, ``uint16``, ``uint32``, ``uint64``).
            - ``'integral'``: integer data types. Shorthand for ``('signed
              integer', 'unsigned integer')``.
            - ``'real floating'``: real-valued floating-point data types
              (i.e., ``float32``, ``float64``).
            - ``'complex floating'``: complex floating-point data types (i.e.,
              ``complex64``, ``complex128``).
            - ``'numeric'``: numeric data types. Shorthand for ``('integral',
              'real floating', 'complex floating')``.

        Returns
        -------
        dtypes : dict
            A dictionary mapping the names of data types to the corresponding
            PyTorch data types.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.devices

        Examples
        --------
        >>> info = xp.__array_namespace_info__()
        >>> info.dtypes(kind='signed integer')
        {'int8': numpy.int8,
         'int16': numpy.int16,
         'int32': numpy.int32,
         'int64': numpy.int64}

        """
        res = self._dtypes(kind)
        for k, v in res.copy().items():
            try:
                torch.empty((0,), dtype=v, device=device)
            except:
                del res[k]
        return res

    @cache
    def devices(self):
        """
        The devices supported by PyTorch.

        Returns
        -------
        devices : list[Device]
            The devices supported by PyTorch.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes

        Examples
        --------
        >>> info = xp.__array_namespace_info__()
        >>> info.devices()
        [device(type='cpu'), device(type='mps', index=0), device(type='meta')]

        """
        # Torch doesn't have a straightforward way to get the list of all
        # currently supported devices. To do this, we first parse the error
        # message of torch.device to get the list of all possible types of
        # device:
        try:
            torch.device('notadevice')
            raise AssertionError("unreachable")  # pragma: nocover
        except RuntimeError as e:
            # The error message is something like:
            # "Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: notadevice"
            devices_names = e.args[0].split('Expected one of ')[1].split(' device type')[0].split(', ')

        # Next we need to check for different indices for different devices.
        # device(device_name, index=index) doesn't actually check if the
        # device name or index is valid. We have to try to create a tensor
        # with it (which is why this function is cached).
        devices = []
        for device_name in devices_names:
            i = 0
            while True:
                try:
                    a = torch.empty((0,), device=torch.device(device_name, index=i))
                    if a.device in devices:
                        break
                    devices.append(a.device)
                except:
                    break
                i += 1

        return devices