File: fft.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (85 lines) | stat: -rw-r--r-- 1,738 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import annotations

from typing import Union, Sequence, Literal

import torch
import torch.fft
from torch.fft import * # noqa: F403

from ._typing import Array

# Several torch fft functions do not map axes to dim

def fftn(
    x: Array,
    /,
    *,
    s: Sequence[int] = None,
    axes: Sequence[int] = None,
    norm: Literal["backward", "ortho", "forward"] = "backward",
    **kwargs,
) -> Array:
    return torch.fft.fftn(x, s=s, dim=axes, norm=norm, **kwargs)

def ifftn(
    x: Array,
    /,
    *,
    s: Sequence[int] = None,
    axes: Sequence[int] = None,
    norm: Literal["backward", "ortho", "forward"] = "backward",
    **kwargs,
) -> Array:
    return torch.fft.ifftn(x, s=s, dim=axes, norm=norm, **kwargs)

def rfftn(
    x: Array,
    /,
    *,
    s: Sequence[int] = None,
    axes: Sequence[int] = None,
    norm: Literal["backward", "ortho", "forward"] = "backward",
    **kwargs,
) -> Array:
    return torch.fft.rfftn(x, s=s, dim=axes, norm=norm, **kwargs)

def irfftn(
    x: Array,
    /,
    *,
    s: Sequence[int] = None,
    axes: Sequence[int] = None,
    norm: Literal["backward", "ortho", "forward"] = "backward",
    **kwargs,
) -> Array:
    return torch.fft.irfftn(x, s=s, dim=axes, norm=norm, **kwargs)

def fftshift(
    x: Array,
    /,
    *,
    axes: Union[int, Sequence[int]] = None,
    **kwargs,
) -> Array:
    return torch.fft.fftshift(x, dim=axes, **kwargs)

def ifftshift(
    x: Array,
    /,
    *,
    axes: Union[int, Sequence[int]] = None,
    **kwargs,
) -> Array:
    return torch.fft.ifftshift(x, dim=axes, **kwargs)


__all__ = torch.fft.__all__ + [
    "fftn",
    "ifftn",
    "rfftn",
    "irfftn",
    "fftshift",
    "ifftshift",
]

_all_ignore = ['torch']