1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
import numpy as np
from ...base import is_regressor
from ...preprocessing import LabelEncoder
from ...utils import _safe_indexing
from ...utils._optional_dependencies import check_matplotlib_support
from ...utils._response import _get_response_values
from ...utils._set_output import _get_adapter_from_container
from ...utils.validation import (
_is_arraylike_not_scalar,
_is_pandas_df,
_is_polars_df,
_num_features,
check_is_fitted,
)
def _check_boundary_response_method(estimator, response_method, class_of_interest):
"""Validate the response methods to be used with the fitted estimator.
Parameters
----------
estimator : object
Fitted estimator to check.
response_method : {'auto', 'decision_function', 'predict_proba', 'predict'}
Specifies whether to use :term:`decision_function`, :term:`predict_proba`,
:term:`predict` as the target response. If set to 'auto', the response method is
tried in the before mentioned order.
class_of_interest : int, float, bool, str or None
The class considered when plotting the decision. Cannot be None if
multiclass and `response_method` is 'predict_proba' or 'decision_function'.
.. versionadded:: 1.4
Returns
-------
prediction_method : list of str or str
The name or list of names of the response methods to use.
"""
has_classes = hasattr(estimator, "classes_")
if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):
msg = "Multi-label and multi-output multi-class classifiers are not supported"
raise ValueError(msg)
if response_method == "auto":
if is_regressor(estimator):
prediction_method = "predict"
else:
prediction_method = ["decision_function", "predict_proba", "predict"]
else:
prediction_method = response_method
return prediction_method
class DecisionBoundaryDisplay:
"""Decisions boundary visualization.
It is recommended to use
:func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
attributes.
Read more in the :ref:`User Guide <visualizations>`.
For a detailed example comparing the decision boundaries of multinomial and
one-vs-rest logistic regression, please see
:ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py`.
.. versionadded:: 1.1
Parameters
----------
xx0 : ndarray of shape (grid_resolution, grid_resolution)
First output of :func:`meshgrid <numpy.meshgrid>`.
xx1 : ndarray of shape (grid_resolution, grid_resolution)
Second output of :func:`meshgrid <numpy.meshgrid>`.
response : ndarray of shape (grid_resolution, grid_resolution) or \
(grid_resolution, grid_resolution, n_classes)
Values of the response function.
multiclass_colors : list of str or str, default=None
Specifies how to color each class when plotting all classes of multiclass
problem. Ignored for binary problems and multiclass problems when plotting a
single prediction value per point.
Possible inputs are:
* list: list of Matplotlib
`color <https://matplotlib.org/stable/users/explain/colors/colors.html#colors-def>`_
strings, of length `n_classes`
* str: name of :class:`matplotlib.colors.Colormap`
* None: 'viridis' colormap is used to sample colors
Single color colormaps will be generated from the colors in the list or
colors taken from the colormap and passed to the `cmap` parameter of
the `plot_method`.
.. versionadded:: 1.7
xlabel : str, default=None
Default label to place on x axis.
ylabel : str, default=None
Default label to place on y axis.
Attributes
----------
surface_ : matplotlib `QuadContourSet` or `QuadMesh` or list of such objects
If `plot_method` is 'contour' or 'contourf', `surface_` is
:class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
`plot_method` is 'pcolormesh', `surface_` is
:class:`QuadMesh <matplotlib.collections.QuadMesh>`.
multiclass_colors_ : array of shape (n_classes, 4)
Colors used to plot each class in multiclass problems.
Only defined when `color_of_interest` is None.
.. versionadded:: 1.7
ax_ : matplotlib Axes
Axes with decision boundary.
figure_ : matplotlib Figure
Figure containing the decision boundary.
See Also
--------
DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.inspection import DecisionBoundaryDisplay
>>> from sklearn.tree import DecisionTreeClassifier
>>> iris = load_iris()
>>> feature_1, feature_2 = np.meshgrid(
... np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
... np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
... )
>>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
>>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
>>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
>>> display = DecisionBoundaryDisplay(
... xx0=feature_1, xx1=feature_2, response=y_pred
... )
>>> display.plot()
<...>
>>> display.ax_.scatter(
... iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
... )
<...>
>>> plt.show()
"""
def __init__(
self, *, xx0, xx1, response, multiclass_colors=None, xlabel=None, ylabel=None
):
self.xx0 = xx0
self.xx1 = xx1
self.response = response
self.multiclass_colors = multiclass_colors
self.xlabel = xlabel
self.ylabel = ylabel
def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
"""Plot visualization.
Parameters
----------
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
xlabel : str, default=None
Overwrite the x-axis label.
ylabel : str, default=None
Overwrite the y-axis label.
**kwargs : dict
Additional keyword arguments to be passed to the `plot_method`.
Returns
-------
display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
Object that stores computed values.
"""
check_matplotlib_support("DecisionBoundaryDisplay.plot")
import matplotlib as mpl
import matplotlib.pyplot as plt
if plot_method not in ("contourf", "contour", "pcolormesh"):
raise ValueError(
"plot_method must be 'contourf', 'contour', or 'pcolormesh'. "
f"Got {plot_method} instead."
)
if ax is None:
_, ax = plt.subplots()
plot_func = getattr(ax, plot_method)
if self.response.ndim == 2:
self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
else: # self.response.ndim == 3
n_responses = self.response.shape[-1]
for kwarg in ("cmap", "colors"):
if kwarg in kwargs:
warnings.warn(
f"'{kwarg}' is ignored in favor of 'multiclass_colors' "
"in the multiclass case when the response method is "
"'decision_function' or 'predict_proba'."
)
del kwargs[kwarg]
if self.multiclass_colors is None or isinstance(
self.multiclass_colors, str
):
if self.multiclass_colors is None:
cmap = "tab10" if n_responses <= 10 else "gist_rainbow"
else:
cmap = self.multiclass_colors
# Special case for the tab10 and tab20 colormaps that encode a
# discrete set of colors that are easily distinguishable
# contrary to other colormaps that are continuous.
if cmap == "tab10" and n_responses <= 10:
colors = plt.get_cmap("tab10", 10).colors[:n_responses]
elif cmap == "tab20" and n_responses <= 20:
colors = plt.get_cmap("tab20", 20).colors[:n_responses]
else:
cmap = plt.get_cmap(cmap, n_responses)
if not hasattr(cmap, "colors"):
# For LinearSegmentedColormap
colors = cmap(np.linspace(0, 1, n_responses))
else:
colors = cmap.colors
elif isinstance(self.multiclass_colors, list):
colors = [mpl.colors.to_rgba(color) for color in self.multiclass_colors]
else:
raise ValueError("'multiclass_colors' must be a list or a str.")
self.multiclass_colors_ = colors
if plot_method == "contour":
# Plot only argmax map for contour
class_map = self.response.argmax(axis=2)
self.surface_ = plot_func(
self.xx0, self.xx1, class_map, colors=colors, **kwargs
)
else:
multiclass_cmaps = [
mpl.colors.LinearSegmentedColormap.from_list(
f"colormap_{class_idx}", [(1.0, 1.0, 1.0, 1.0), (r, g, b, 1.0)]
)
for class_idx, (r, g, b, _) in enumerate(colors)
]
self.surface_ = []
for class_idx, cmap in enumerate(multiclass_cmaps):
response = np.ma.array(
self.response[:, :, class_idx],
mask=~(self.response.argmax(axis=2) == class_idx),
)
self.surface_.append(
plot_func(self.xx0, self.xx1, response, cmap=cmap, **kwargs)
)
if xlabel is not None or not ax.get_xlabel():
xlabel = self.xlabel if xlabel is None else xlabel
ax.set_xlabel(xlabel)
if ylabel is not None or not ax.get_ylabel():
ylabel = self.ylabel if ylabel is None else ylabel
ax.set_ylabel(ylabel)
self.ax_ = ax
self.figure_ = ax.figure
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
*,
grid_resolution=100,
eps=1.0,
plot_method="contourf",
response_method="auto",
class_of_interest=None,
multiclass_colors=None,
xlabel=None,
ylabel=None,
ax=None,
**kwargs,
):
"""Plot decision boundary given an estimator.
Read more in the :ref:`User Guide <visualizations>`.
Parameters
----------
estimator : object
Trained estimator used to plot the decision boundary.
X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
Input data that should be only 2-dimensional.
grid_resolution : int, default=100
Number of grid points to use for plotting decision boundary.
Higher values will make the plot look nicer but be slower to
render.
eps : float, default=1.0
Extends the minimum and maximum values of X for evaluating the
response function.
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
response_method : {'auto', 'decision_function', 'predict_proba', \
'predict'}, default='auto'
Specifies whether to use :term:`decision_function`,
:term:`predict_proba` or :term:`predict` as the target response.
If set to 'auto', the response method is tried in the order as
listed above.
.. versionchanged:: 1.6
For multiclass problems, 'auto' no longer defaults to 'predict'.
class_of_interest : int, float, bool or str, default=None
The class to be plotted when `response_method` is 'predict_proba'
or 'decision_function'. If None, `estimator.classes_[1]` is considered
the positive class for binary classifiers. For multiclass
classifiers, if None, all classes will be represented in the
decision boundary plot; the class with the highest response value
at each point is plotted. The color of each class can be set via
`multiclass_colors`.
.. versionadded:: 1.4
multiclass_colors : list of str, or str, default=None
Specifies how to color each class when plotting multiclass
'predict_proba' or 'decision_function' and `class_of_interest` is
None. Ignored in all other cases.
Possible inputs are:
* list: list of Matplotlib
`color <https://matplotlib.org/stable/users/explain/colors/colors.html#colors-def>`_
strings, of length `n_classes`
* str: name of :class:`matplotlib.colors.Colormap`
* None: 'tab10' colormap is used to sample colors if the number of
classes is less than or equal to 10, otherwise 'gist_rainbow'
colormap.
Single color colormaps will be generated from the colors in the list or
colors taken from the colormap, and passed to the `cmap` parameter of
the `plot_method`.
.. versionadded:: 1.7
xlabel : str, default=None
The label used for the x-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ylabel : str, default=None
The label used for the y-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Additional keyword arguments to be passed to the
`plot_method`.
Returns
-------
display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
Object that stores the result.
See Also
--------
DecisionBoundaryDisplay : Decision boundary visualization.
sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the
confusion matrix given an estimator, the data, and the label.
sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the
confusion matrix given the true and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.inspection import DecisionBoundaryDisplay
>>> iris = load_iris()
>>> X = iris.data[:, :2]
>>> classifier = LogisticRegression().fit(X, iris.target)
>>> disp = DecisionBoundaryDisplay.from_estimator(
... classifier, X, response_method="predict",
... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
... alpha=0.5,
... )
>>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_estimator")
check_is_fitted(estimator)
import matplotlib as mpl
if not grid_resolution > 1:
raise ValueError(
"grid_resolution must be greater than 1. Got"
f" {grid_resolution} instead."
)
if not eps >= 0:
raise ValueError(
f"eps must be greater than or equal to 0. Got {eps} instead."
)
possible_plot_methods = ("contourf", "contour", "pcolormesh")
if plot_method not in possible_plot_methods:
available_methods = ", ".join(possible_plot_methods)
raise ValueError(
f"plot_method must be one of {available_methods}. "
f"Got {plot_method} instead."
)
num_features = _num_features(X)
if num_features != 2:
raise ValueError(
f"n_features must be equal to 2. Got {num_features} instead."
)
if (
response_method in ("predict_proba", "decision_function", "auto")
and multiclass_colors is not None
and hasattr(estimator, "classes_")
and (n_classes := len(estimator.classes_)) > 2
):
if isinstance(multiclass_colors, list):
if len(multiclass_colors) != n_classes:
raise ValueError(
"When 'multiclass_colors' is a list, it must be of the same "
f"length as 'estimator.classes_' ({n_classes}), got: "
f"{len(multiclass_colors)}."
)
elif any(
not mpl.colors.is_color_like(col) for col in multiclass_colors
):
raise ValueError(
"When 'multiclass_colors' is a list, it can only contain valid"
f" Matplotlib color names. Got: {multiclass_colors}"
)
if isinstance(multiclass_colors, str):
if multiclass_colors not in mpl.pyplot.colormaps():
raise ValueError(
"When 'multiclass_colors' is a string, it must be a valid "
f"Matplotlib colormap. Got: {multiclass_colors}"
)
x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
xx0, xx1 = np.meshgrid(
np.linspace(x0_min, x0_max, grid_resolution),
np.linspace(x1_min, x1_max, grid_resolution),
)
X_grid = np.c_[xx0.ravel(), xx1.ravel()]
if _is_pandas_df(X) or _is_polars_df(X):
adapter = _get_adapter_from_container(X)
X_grid = adapter.create_container(
X_grid,
X_grid,
columns=X.columns,
)
prediction_method = _check_boundary_response_method(
estimator, response_method, class_of_interest
)
try:
response, _, response_method_used = _get_response_values(
estimator,
X_grid,
response_method=prediction_method,
pos_label=class_of_interest,
return_response_method_used=True,
)
except ValueError as exc:
if "is not a valid label" in str(exc):
# re-raise a more informative error message since `pos_label` is unknown
# to our user when interacting with
# `DecisionBoundaryDisplay.from_estimator`
raise ValueError(
f"class_of_interest={class_of_interest} is not a valid label: It "
f"should be one of {estimator.classes_}"
) from exc
raise
# convert classes predictions into integers
if response_method_used == "predict" and hasattr(estimator, "classes_"):
encoder = LabelEncoder()
encoder.classes_ = estimator.classes_
response = encoder.transform(response)
if response.ndim == 1:
response = response.reshape(*xx0.shape)
else:
if is_regressor(estimator):
raise ValueError("Multi-output regressors are not supported")
if class_of_interest is not None:
# For the multiclass case, `_get_response_values` returns the response
# as-is. Thus, we have a column per class and we need to select the
# column corresponding to the positive class.
col_idx = np.flatnonzero(estimator.classes_ == class_of_interest)[0]
response = response[:, col_idx].reshape(*xx0.shape)
else:
response = response.reshape(*xx0.shape, response.shape[-1])
if xlabel is None:
xlabel = X.columns[0] if hasattr(X, "columns") else ""
if ylabel is None:
ylabel = X.columns[1] if hasattr(X, "columns") else ""
display = cls(
xx0=xx0,
xx1=xx1,
response=response,
multiclass_colors=multiclass_colors,
xlabel=xlabel,
ylabel=ylabel,
)
return display.plot(ax=ax, plot_method=plot_method, **kwargs)
|