File: decision_boundary.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (564 lines) | stat: -rw-r--r-- 22,072 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings

import numpy as np

from ...base import is_regressor
from ...preprocessing import LabelEncoder
from ...utils import _safe_indexing
from ...utils._optional_dependencies import check_matplotlib_support
from ...utils._response import _get_response_values
from ...utils._set_output import _get_adapter_from_container
from ...utils.validation import (
    _is_arraylike_not_scalar,
    _is_pandas_df,
    _is_polars_df,
    _num_features,
    check_is_fitted,
)


def _check_boundary_response_method(estimator, response_method, class_of_interest):
    """Validate the response methods to be used with the fitted estimator.

    Parameters
    ----------
    estimator : object
        Fitted estimator to check.

    response_method : {'auto', 'decision_function', 'predict_proba', 'predict'}
        Specifies whether to use :term:`decision_function`, :term:`predict_proba`,
        :term:`predict` as the target response. If set to 'auto', the response method is
        tried in the before mentioned order.

    class_of_interest : int, float, bool, str or None
        The class considered when plotting the decision. Cannot be None if
        multiclass and `response_method` is 'predict_proba' or 'decision_function'.

        .. versionadded:: 1.4

    Returns
    -------
    prediction_method : list of str or str
        The name or list of names of the response methods to use.
    """
    has_classes = hasattr(estimator, "classes_")
    if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):
        msg = "Multi-label and multi-output multi-class classifiers are not supported"
        raise ValueError(msg)

    if response_method == "auto":
        if is_regressor(estimator):
            prediction_method = "predict"
        else:
            prediction_method = ["decision_function", "predict_proba", "predict"]
    else:
        prediction_method = response_method

    return prediction_method


class DecisionBoundaryDisplay:
    """Decisions boundary visualization.

    It is recommended to use
    :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
    to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
    attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    For a detailed example comparing the decision boundaries of multinomial and
    one-vs-rest logistic regression, please see
    :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py`.

    .. versionadded:: 1.1

    Parameters
    ----------
    xx0 : ndarray of shape (grid_resolution, grid_resolution)
        First output of :func:`meshgrid <numpy.meshgrid>`.

    xx1 : ndarray of shape (grid_resolution, grid_resolution)
        Second output of :func:`meshgrid <numpy.meshgrid>`.

    response : ndarray of shape (grid_resolution, grid_resolution) or \
            (grid_resolution, grid_resolution, n_classes)
        Values of the response function.

    multiclass_colors : list of str or str, default=None
        Specifies how to color each class when plotting all classes of multiclass
        problem. Ignored for binary problems and multiclass problems when plotting a
        single prediction value per point.
        Possible inputs are:

        * list: list of Matplotlib
          `color <https://matplotlib.org/stable/users/explain/colors/colors.html#colors-def>`_
          strings, of length `n_classes`
        * str: name of :class:`matplotlib.colors.Colormap`
        * None: 'viridis' colormap is used to sample colors

        Single color colormaps will be generated from the colors in the list or
        colors taken from the colormap and passed to the `cmap` parameter of
        the `plot_method`.

        .. versionadded:: 1.7

    xlabel : str, default=None
        Default label to place on x axis.

    ylabel : str, default=None
        Default label to place on y axis.

    Attributes
    ----------
    surface_ : matplotlib `QuadContourSet` or `QuadMesh` or list of such objects
        If `plot_method` is 'contour' or 'contourf', `surface_` is
        :class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
        `plot_method` is 'pcolormesh', `surface_` is
        :class:`QuadMesh <matplotlib.collections.QuadMesh>`.

    multiclass_colors_ : array of shape (n_classes, 4)
        Colors used to plot each class in multiclass problems.
        Only defined when `color_of_interest` is None.

        .. versionadded:: 1.7

    ax_ : matplotlib Axes
        Axes with decision boundary.

    figure_ : matplotlib Figure
        Figure containing the decision boundary.

    See Also
    --------
    DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.inspection import DecisionBoundaryDisplay
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> iris = load_iris()
    >>> feature_1, feature_2 = np.meshgrid(
    ...     np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
    ...     np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
    ... )
    >>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
    >>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
    >>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
    >>> display = DecisionBoundaryDisplay(
    ...     xx0=feature_1, xx1=feature_2, response=y_pred
    ... )
    >>> display.plot()
    <...>
    >>> display.ax_.scatter(
    ...     iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
    ... )
    <...>
    >>> plt.show()
    """

    def __init__(
        self, *, xx0, xx1, response, multiclass_colors=None, xlabel=None, ylabel=None
    ):
        self.xx0 = xx0
        self.xx1 = xx1
        self.response = response
        self.multiclass_colors = multiclass_colors
        self.xlabel = xlabel
        self.ylabel = ylabel

    def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
        """Plot visualization.

        Parameters
        ----------
        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        xlabel : str, default=None
            Overwrite the x-axis label.

        ylabel : str, default=None
            Overwrite the y-axis label.

        **kwargs : dict
            Additional keyword arguments to be passed to the `plot_method`.

        Returns
        -------
        display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores computed values.
        """
        check_matplotlib_support("DecisionBoundaryDisplay.plot")
        import matplotlib as mpl
        import matplotlib.pyplot as plt

        if plot_method not in ("contourf", "contour", "pcolormesh"):
            raise ValueError(
                "plot_method must be 'contourf', 'contour', or 'pcolormesh'. "
                f"Got {plot_method} instead."
            )

        if ax is None:
            _, ax = plt.subplots()

        plot_func = getattr(ax, plot_method)
        if self.response.ndim == 2:
            self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
        else:  # self.response.ndim == 3
            n_responses = self.response.shape[-1]
            for kwarg in ("cmap", "colors"):
                if kwarg in kwargs:
                    warnings.warn(
                        f"'{kwarg}' is ignored in favor of 'multiclass_colors' "
                        "in the multiclass case when the response method is "
                        "'decision_function' or 'predict_proba'."
                    )
                    del kwargs[kwarg]

            if self.multiclass_colors is None or isinstance(
                self.multiclass_colors, str
            ):
                if self.multiclass_colors is None:
                    cmap = "tab10" if n_responses <= 10 else "gist_rainbow"
                else:
                    cmap = self.multiclass_colors

                # Special case for the tab10 and tab20 colormaps that encode a
                # discrete set of colors that are easily distinguishable
                # contrary to other colormaps that are continuous.
                if cmap == "tab10" and n_responses <= 10:
                    colors = plt.get_cmap("tab10", 10).colors[:n_responses]
                elif cmap == "tab20" and n_responses <= 20:
                    colors = plt.get_cmap("tab20", 20).colors[:n_responses]
                else:
                    cmap = plt.get_cmap(cmap, n_responses)
                    if not hasattr(cmap, "colors"):
                        # For LinearSegmentedColormap
                        colors = cmap(np.linspace(0, 1, n_responses))
                    else:
                        colors = cmap.colors
            elif isinstance(self.multiclass_colors, list):
                colors = [mpl.colors.to_rgba(color) for color in self.multiclass_colors]
            else:
                raise ValueError("'multiclass_colors' must be a list or a str.")

            self.multiclass_colors_ = colors
            if plot_method == "contour":
                # Plot only argmax map for contour
                class_map = self.response.argmax(axis=2)
                self.surface_ = plot_func(
                    self.xx0, self.xx1, class_map, colors=colors, **kwargs
                )
            else:
                multiclass_cmaps = [
                    mpl.colors.LinearSegmentedColormap.from_list(
                        f"colormap_{class_idx}", [(1.0, 1.0, 1.0, 1.0), (r, g, b, 1.0)]
                    )
                    for class_idx, (r, g, b, _) in enumerate(colors)
                ]

                self.surface_ = []
                for class_idx, cmap in enumerate(multiclass_cmaps):
                    response = np.ma.array(
                        self.response[:, :, class_idx],
                        mask=~(self.response.argmax(axis=2) == class_idx),
                    )
                    self.surface_.append(
                        plot_func(self.xx0, self.xx1, response, cmap=cmap, **kwargs)
                    )

        if xlabel is not None or not ax.get_xlabel():
            xlabel = self.xlabel if xlabel is None else xlabel
            ax.set_xlabel(xlabel)
        if ylabel is not None or not ax.get_ylabel():
            ylabel = self.ylabel if ylabel is None else ylabel
            ax.set_ylabel(ylabel)

        self.ax_ = ax
        self.figure_ = ax.figure
        return self

    @classmethod
    def from_estimator(
        cls,
        estimator,
        X,
        *,
        grid_resolution=100,
        eps=1.0,
        plot_method="contourf",
        response_method="auto",
        class_of_interest=None,
        multiclass_colors=None,
        xlabel=None,
        ylabel=None,
        ax=None,
        **kwargs,
    ):
        """Plot decision boundary given an estimator.

        Read more in the :ref:`User Guide <visualizations>`.

        Parameters
        ----------
        estimator : object
            Trained estimator used to plot the decision boundary.

        X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
            Input data that should be only 2-dimensional.

        grid_resolution : int, default=100
            Number of grid points to use for plotting decision boundary.
            Higher values will make the plot look nicer but be slower to
            render.

        eps : float, default=1.0
            Extends the minimum and maximum values of X for evaluating the
            response function.

        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        response_method : {'auto', 'decision_function', 'predict_proba', \
                'predict'}, default='auto'
            Specifies whether to use :term:`decision_function`,
            :term:`predict_proba` or :term:`predict` as the target response.
            If set to 'auto', the response method is tried in the order as
            listed above.

            .. versionchanged:: 1.6
                For multiclass problems, 'auto' no longer defaults to 'predict'.

        class_of_interest : int, float, bool or str, default=None
            The class to be plotted when `response_method` is 'predict_proba'
            or 'decision_function'. If None, `estimator.classes_[1]` is considered
            the positive class for binary classifiers. For multiclass
            classifiers, if None, all classes will be represented in the
            decision boundary plot; the class with the highest response value
            at each point is plotted. The color of each class can be set via
            `multiclass_colors`.

            .. versionadded:: 1.4

        multiclass_colors : list of str, or str, default=None
            Specifies how to color each class when plotting multiclass
            'predict_proba' or 'decision_function' and `class_of_interest` is
            None. Ignored in all other cases.

            Possible inputs are:

            * list: list of Matplotlib
              `color <https://matplotlib.org/stable/users/explain/colors/colors.html#colors-def>`_
              strings, of length `n_classes`
            * str: name of :class:`matplotlib.colors.Colormap`
            * None: 'tab10' colormap is used to sample colors if the number of
                classes is less than or equal to 10, otherwise 'gist_rainbow'
                colormap.

            Single color colormaps will be generated from the colors in the list or
            colors taken from the colormap, and passed to the `cmap` parameter of
            the `plot_method`.

            .. versionadded:: 1.7

        xlabel : str, default=None
            The label used for the x-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ylabel : str, default=None
            The label used for the y-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keyword arguments to be passed to the
            `plot_method`.

        Returns
        -------
        display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores the result.

        See Also
        --------
        DecisionBoundaryDisplay : Decision boundary visualization.
        sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the
            confusion matrix given an estimator, the data, and the label.
        sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the
            confusion matrix given the true and predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_iris
        >>> from sklearn.linear_model import LogisticRegression
        >>> from sklearn.inspection import DecisionBoundaryDisplay
        >>> iris = load_iris()
        >>> X = iris.data[:, :2]
        >>> classifier = LogisticRegression().fit(X, iris.target)
        >>> disp = DecisionBoundaryDisplay.from_estimator(
        ...     classifier, X, response_method="predict",
        ...     xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
        ...     alpha=0.5,
        ... )
        >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
        <...>
        >>> plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_estimator")
        check_is_fitted(estimator)
        import matplotlib as mpl

        if not grid_resolution > 1:
            raise ValueError(
                "grid_resolution must be greater than 1. Got"
                f" {grid_resolution} instead."
            )

        if not eps >= 0:
            raise ValueError(
                f"eps must be greater than or equal to 0. Got {eps} instead."
            )

        possible_plot_methods = ("contourf", "contour", "pcolormesh")
        if plot_method not in possible_plot_methods:
            available_methods = ", ".join(possible_plot_methods)
            raise ValueError(
                f"plot_method must be one of {available_methods}. "
                f"Got {plot_method} instead."
            )

        num_features = _num_features(X)
        if num_features != 2:
            raise ValueError(
                f"n_features must be equal to 2. Got {num_features} instead."
            )

        if (
            response_method in ("predict_proba", "decision_function", "auto")
            and multiclass_colors is not None
            and hasattr(estimator, "classes_")
            and (n_classes := len(estimator.classes_)) > 2
        ):
            if isinstance(multiclass_colors, list):
                if len(multiclass_colors) != n_classes:
                    raise ValueError(
                        "When 'multiclass_colors' is a list, it must be of the same "
                        f"length as 'estimator.classes_' ({n_classes}), got: "
                        f"{len(multiclass_colors)}."
                    )
                elif any(
                    not mpl.colors.is_color_like(col) for col in multiclass_colors
                ):
                    raise ValueError(
                        "When 'multiclass_colors' is a list, it can only contain valid"
                        f" Matplotlib color names. Got: {multiclass_colors}"
                    )
            if isinstance(multiclass_colors, str):
                if multiclass_colors not in mpl.pyplot.colormaps():
                    raise ValueError(
                        "When 'multiclass_colors' is a string, it must be a valid "
                        f"Matplotlib colormap. Got: {multiclass_colors}"
                    )

        x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)

        x0_min, x0_max = x0.min() - eps, x0.max() + eps
        x1_min, x1_max = x1.min() - eps, x1.max() + eps

        xx0, xx1 = np.meshgrid(
            np.linspace(x0_min, x0_max, grid_resolution),
            np.linspace(x1_min, x1_max, grid_resolution),
        )

        X_grid = np.c_[xx0.ravel(), xx1.ravel()]
        if _is_pandas_df(X) or _is_polars_df(X):
            adapter = _get_adapter_from_container(X)
            X_grid = adapter.create_container(
                X_grid,
                X_grid,
                columns=X.columns,
            )

        prediction_method = _check_boundary_response_method(
            estimator, response_method, class_of_interest
        )
        try:
            response, _, response_method_used = _get_response_values(
                estimator,
                X_grid,
                response_method=prediction_method,
                pos_label=class_of_interest,
                return_response_method_used=True,
            )
        except ValueError as exc:
            if "is not a valid label" in str(exc):
                # re-raise a more informative error message since `pos_label` is unknown
                # to our user when interacting with
                # `DecisionBoundaryDisplay.from_estimator`
                raise ValueError(
                    f"class_of_interest={class_of_interest} is not a valid label: It "
                    f"should be one of {estimator.classes_}"
                ) from exc
            raise

        # convert classes predictions into integers
        if response_method_used == "predict" and hasattr(estimator, "classes_"):
            encoder = LabelEncoder()
            encoder.classes_ = estimator.classes_
            response = encoder.transform(response)

        if response.ndim == 1:
            response = response.reshape(*xx0.shape)
        else:
            if is_regressor(estimator):
                raise ValueError("Multi-output regressors are not supported")

            if class_of_interest is not None:
                # For the multiclass case, `_get_response_values` returns the response
                # as-is. Thus, we have a column per class and we need to select the
                # column corresponding to the positive class.
                col_idx = np.flatnonzero(estimator.classes_ == class_of_interest)[0]
                response = response[:, col_idx].reshape(*xx0.shape)
            else:
                response = response.reshape(*xx0.shape, response.shape[-1])

        if xlabel is None:
            xlabel = X.columns[0] if hasattr(X, "columns") else ""

        if ylabel is None:
            ylabel = X.columns[1] if hasattr(X, "columns") else ""

        display = cls(
            xx0=xx0,
            xx1=xx1,
            response=response,
            multiclass_colors=multiclass_colors,
            xlabel=xlabel,
            ylabel=ylabel,
        )
        return display.plot(ax=ax, plot_method=plot_method, **kwargs)