File: test_common.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (234 lines) | stat: -rw-r--r-- 7,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# SPDX-License-Identifier: BSD-3-Clause

import inspect

import numpy as np
import pytest

from sklearn.base import is_classifier
from sklearn.datasets import make_classification, make_low_rank_matrix, make_regression
from sklearn.linear_model import (
    ARDRegression,
    BayesianRidge,
    ElasticNet,
    ElasticNetCV,
    GammaRegressor,
    HuberRegressor,
    Lars,
    LarsCV,
    Lasso,
    LassoCV,
    LassoLars,
    LassoLarsCV,
    LassoLarsIC,
    LinearRegression,
    LogisticRegression,
    LogisticRegressionCV,
    MultiTaskElasticNet,
    MultiTaskElasticNetCV,
    MultiTaskLasso,
    MultiTaskLassoCV,
    OrthogonalMatchingPursuit,
    OrthogonalMatchingPursuitCV,
    PassiveAggressiveClassifier,
    PassiveAggressiveRegressor,
    Perceptron,
    PoissonRegressor,
    Ridge,
    RidgeClassifier,
    RidgeClassifierCV,
    RidgeCV,
    SGDClassifier,
    SGDRegressor,
    TheilSenRegressor,
    TweedieRegressor,
)
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import LinearSVC, LinearSVR
from sklearn.utils._testing import set_random_state


# Note: GammaRegressor() and TweedieRegressor(power != 1) have a non-canonical link.
@pytest.mark.parametrize(
    "model",
    [
        ARDRegression(),
        BayesianRidge(),
        ElasticNet(),
        ElasticNetCV(),
        Lars(),
        LarsCV(),
        Lasso(),
        LassoCV(),
        LassoLarsCV(),
        LassoLarsIC(),
        LinearRegression(),
        # TODO: FIx SAGA which fails badly with sample_weights.
        # This is a known limitation, see:
        # https://github.com/scikit-learn/scikit-learn/issues/21305
        pytest.param(
            LogisticRegression(
                penalty="elasticnet", solver="saga", l1_ratio=0.5, tol=1e-15
            ),
            marks=pytest.mark.xfail(reason="Missing importance sampling scheme"),
        ),
        LogisticRegressionCV(tol=1e-6),
        MultiTaskElasticNet(),
        MultiTaskElasticNetCV(),
        MultiTaskLasso(),
        MultiTaskLassoCV(),
        OrthogonalMatchingPursuit(),
        OrthogonalMatchingPursuitCV(),
        PoissonRegressor(),
        Ridge(),
        RidgeCV(),
        pytest.param(
            SGDRegressor(tol=1e-15),
            marks=pytest.mark.xfail(reason="Insufficient precision."),
        ),
        SGDRegressor(penalty="elasticnet", max_iter=10_000),
        TweedieRegressor(power=0),  # same as Ridge
    ],
    ids=lambda x: x.__class__.__name__,
)
@pytest.mark.parametrize("with_sample_weight", [False, True])
def test_balance_property(model, with_sample_weight, global_random_seed):
    # Test that sum(y_predicted) == sum(y_observed) on the training set.
    # This must hold for all linear models with deviance of an exponential disperson
    # family as loss and the corresponding canonical link if fit_intercept=True.
    # Examples:
    #     - squared error and identity link (most linear models)
    #     - Poisson deviance with log link
    #     - log loss with logit link
    # This is known as balance property or unconditional calibration/unbiasedness.
    # For reference, see Corollary 3.18, 3.20 and Chapter 5.1.5 of
    # M.V. Wuthrich and M. Merz, "Statistical Foundations of Actuarial Learning and its
    # Applications" (June 3, 2022). http://doi.org/10.2139/ssrn.3822407

    if (
        with_sample_weight
        and "sample_weight" not in inspect.signature(model.fit).parameters.keys()
    ):
        pytest.skip("Estimator does not support sample_weight.")

    rel = 2e-4  # test precision
    if isinstance(model, SGDRegressor):
        rel = 1e-1
    elif hasattr(model, "solver") and model.solver == "saga":
        rel = 1e-2

    rng = np.random.RandomState(global_random_seed)
    n_train, n_features, n_targets = 100, 10, None
    if isinstance(
        model,
        (MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLasso, MultiTaskLassoCV),
    ):
        n_targets = 3
    X = make_low_rank_matrix(n_samples=n_train, n_features=n_features, random_state=rng)
    if n_targets:
        coef = (
            rng.uniform(low=-2, high=2, size=(n_features, n_targets))
            / np.max(X, axis=0)[:, None]
        )
    else:
        coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)

    expectation = np.exp(X @ coef + 0.5)
    y = rng.poisson(lam=expectation) + 1  # strict positive, i.e. y > 0
    if is_classifier(model):
        y = (y > expectation + 1).astype(np.float64)

    if with_sample_weight:
        sw = rng.uniform(low=1, high=10, size=y.shape[0])
    else:
        sw = None

    model.set_params(fit_intercept=True)  # to be sure
    if with_sample_weight:
        model.fit(X, y, sample_weight=sw)
    else:
        model.fit(X, y)
    # Assert balance property.
    if is_classifier(model):
        assert np.average(model.predict_proba(X)[:, 1], weights=sw) == pytest.approx(
            np.average(y, weights=sw), rel=rel
        )
    else:
        assert np.average(model.predict(X), weights=sw, axis=0) == pytest.approx(
            np.average(y, weights=sw, axis=0), rel=rel
        )


@pytest.mark.filterwarnings("ignore:The default of 'normalize'")
@pytest.mark.filterwarnings("ignore:lbfgs failed to converge")
@pytest.mark.parametrize(
    "Regressor",
    [
        ARDRegression,
        BayesianRidge,
        ElasticNet,
        ElasticNetCV,
        GammaRegressor,
        HuberRegressor,
        Lars,
        LarsCV,
        Lasso,
        LassoCV,
        LassoLars,
        LassoLarsCV,
        LassoLarsIC,
        LinearSVR,
        LinearRegression,
        OrthogonalMatchingPursuit,
        OrthogonalMatchingPursuitCV,
        PassiveAggressiveRegressor,
        PoissonRegressor,
        Ridge,
        RidgeCV,
        SGDRegressor,
        TheilSenRegressor,
        TweedieRegressor,
    ],
)
@pytest.mark.parametrize("ndim", [1, 2])
def test_linear_model_regressor_coef_shape(Regressor, ndim):
    """Check the consistency of linear models `coef` shape."""
    if Regressor is LinearRegression:
        pytest.xfail("LinearRegression does not follow `coef_` shape contract!")

    X, y = make_regression(random_state=0, n_samples=200, n_features=20)
    y = MinMaxScaler().fit_transform(y.reshape(-1, 1))[:, 0] + 1
    y = y[:, np.newaxis] if ndim == 2 else y

    regressor = Regressor()
    set_random_state(regressor)
    regressor.fit(X, y)
    assert regressor.coef_.shape == (X.shape[1],)


@pytest.mark.parametrize(
    "Classifier",
    [
        LinearSVC,
        LogisticRegression,
        LogisticRegressionCV,
        PassiveAggressiveClassifier,
        Perceptron,
        RidgeClassifier,
        RidgeClassifierCV,
        SGDClassifier,
    ],
)
@pytest.mark.parametrize("n_classes", [2, 3])
def test_linear_model_classifier_coef_shape(Classifier, n_classes):
    if Classifier in (RidgeClassifier, RidgeClassifierCV):
        pytest.xfail(f"{Classifier} does not follow `coef_` shape contract!")

    X, y = make_classification(n_informative=10, n_classes=n_classes, random_state=0)
    n_features = X.shape[1]

    classifier = Classifier()
    set_random_state(classifier)
    classifier.fit(X, y)
    expected_shape = (1, n_features) if n_classes == 2 else (n_classes, n_features)
    assert classifier.coef_.shape == expected_shape