1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
from unittest.mock import Mock
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_equal
from sklearn.datasets import load_digits
from sklearn.manifold import _mds as mds
from sklearn.metrics import euclidean_distances
def test_smacof():
# test metric smacof using the data of "Modern Multidimensional Scaling",
# Borg & Groenen, p 154
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
Z = np.array([[-0.266, -0.539], [0.451, 0.252], [0.016, -0.238], [-0.200, 0.524]])
X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1)
X_true = np.array(
[[-1.415, -2.471], [1.633, 1.107], [0.249, -0.067], [-0.468, 1.431]]
)
assert_array_almost_equal(X, X_true, decimal=3)
def test_nonmetric_lower_normalized_stress():
# Testing that nonmetric MDS results in lower normalized stress compared
# compared to metric MDS (non-regression test for issue 27028)
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
Z = np.array([[-0.266, -0.539], [0.451, 0.252], [0.016, -0.238], [-0.200, 0.524]])
_, stress1 = mds.smacof(
sim, init=Z, n_components=2, max_iter=1000, n_init=1, normalized_stress=True
)
_, stress2 = mds.smacof(
sim,
init=Z,
n_components=2,
max_iter=1000,
n_init=1,
normalized_stress=True,
metric=False,
)
assert stress1 > stress2
def test_nonmetric_mds_optimization():
# Test that stress is decreasing during nonmetric MDS optimization
# (non-regression test for issue 27028)
X, _ = load_digits(return_X_y=True)
rng = np.random.default_rng(seed=42)
ind_subset = rng.choice(len(X), size=200, replace=False)
X = X[ind_subset]
mds_est = mds.MDS(
n_components=2,
n_init=1,
max_iter=2,
metric=False,
random_state=42,
).fit(X)
stress_after_2_iter = mds_est.stress_
mds_est = mds.MDS(
n_components=2,
n_init=1,
max_iter=3,
metric=False,
random_state=42,
).fit(X)
stress_after_3_iter = mds_est.stress_
assert stress_after_2_iter > stress_after_3_iter
@pytest.mark.parametrize("metric", [True, False])
def test_mds_recovers_true_data(metric):
X = np.array([[1, 1], [1, 4], [1, 5], [3, 3]])
mds_est = mds.MDS(
n_components=2,
n_init=1,
eps=1e-15,
max_iter=1000,
metric=metric,
random_state=42,
).fit(X)
stress = mds_est.stress_
assert_allclose(stress, 0, atol=1e-6)
def test_smacof_error():
# Not symmetric similarity matrix:
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
with pytest.raises(ValueError):
mds.smacof(sim, n_init=1)
# Not squared similarity matrix:
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]])
with pytest.raises(ValueError):
mds.smacof(sim, n_init=1)
# init not None and not correct format:
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
Z = np.array([[-0.266, -0.539], [0.016, -0.238], [-0.200, 0.524]])
with pytest.raises(ValueError):
mds.smacof(sim, init=Z, n_init=1)
def test_MDS():
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
mds_clf = mds.MDS(
metric=False,
n_jobs=3,
n_init=3,
dissimilarity="precomputed",
)
mds_clf.fit(sim)
# TODO(1.9): remove warning filter
@pytest.mark.filterwarnings("ignore::FutureWarning")
@pytest.mark.parametrize("k", [0.5, 1.5, 2])
def test_normed_stress(k):
"""Test that non-metric MDS normalized stress is scale-invariant."""
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
X1, stress1 = mds.smacof(sim, metric=False, max_iter=5, random_state=0)
X2, stress2 = mds.smacof(k * sim, metric=False, max_iter=5, random_state=0)
assert_allclose(stress1, stress2, rtol=1e-5)
assert_allclose(X1, X2, rtol=1e-5)
# TODO(1.9): remove warning filter
@pytest.mark.filterwarnings("ignore::FutureWarning")
@pytest.mark.parametrize("metric", [True, False])
def test_normalized_stress_auto(metric, monkeypatch):
rng = np.random.RandomState(0)
X = rng.randn(4, 3)
dist = euclidean_distances(X)
mock = Mock(side_effect=mds._smacof_single)
monkeypatch.setattr("sklearn.manifold._mds._smacof_single", mock)
est = mds.MDS(metric=metric, normalized_stress="auto", random_state=rng)
est.fit_transform(X)
assert mock.call_args[1]["normalized_stress"] != metric
mds.smacof(dist, metric=metric, normalized_stress="auto", random_state=rng)
assert mock.call_args[1]["normalized_stress"] != metric
def test_isotonic_outofbounds():
# This particular configuration can trigger out of bounds error
# in the isotonic regression (non-regression test for issue 26999)
dis = np.array(
[
[0.0, 1.732050807568877, 1.7320508075688772],
[1.732050807568877, 0.0, 6.661338147750939e-16],
[1.7320508075688772, 6.661338147750939e-16, 0.0],
]
)
init = np.array(
[
[0.08665881585055124, 0.7939114643387546],
[0.9959834154297658, 0.7555546025640025],
[0.8766008278401566, 0.4227358815811242],
]
)
mds.smacof(dis, init=init, metric=False, n_init=1)
# TODO(1.9): remove warning filter
@pytest.mark.filterwarnings("ignore::FutureWarning")
@pytest.mark.parametrize("normalized_stress", [True, False])
def test_returned_stress(normalized_stress):
# Test that the final stress corresponds to the final embedding
# (non-regression test for issue 16846)
X = np.array([[1, 1], [1, 4], [1, 5], [3, 3]])
D = euclidean_distances(X)
mds_est = mds.MDS(
n_components=2,
random_state=42,
normalized_stress=normalized_stress,
).fit(X)
Z = mds_est.embedding_
stress = mds_est.stress_
D_mds = euclidean_distances(Z)
stress_Z = ((D_mds.ravel() - D.ravel()) ** 2).sum() / 2
if normalized_stress:
stress_Z = np.sqrt(stress_Z / ((D_mds.ravel() ** 2).sum() / 2))
assert_allclose(stress, stress_Z)
# TODO(1.9): remove warning filter
@pytest.mark.filterwarnings("ignore::FutureWarning")
@pytest.mark.parametrize("metric", [True, False])
def test_convergence_does_not_depend_on_scale(metric):
# Test that the number of iterations until convergence does not depend on
# the scale of the input data
X = np.array([[1, 1], [1, 4], [1, 5], [3, 3]])
mds_est = mds.MDS(
n_components=2,
random_state=42,
metric=metric,
)
mds_est.fit(X * 100)
n_iter1 = mds_est.n_iter_
mds_est.fit(X / 100)
n_iter2 = mds_est.n_iter_
assert_equal(n_iter1, n_iter2)
# TODO(1.9): delete this test
def test_future_warning_n_init():
X = np.array([[1, 1], [1, 4], [1, 5], [3, 3]])
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]])
with pytest.warns(FutureWarning):
mds.smacof(sim)
with pytest.warns(FutureWarning):
mds.MDS().fit(X)
|