| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 
 | {{py:
implementation_specific_values = [
    # Values are the following ones:
    #
    #       name_suffix, upcast_to_float64, INPUT_DTYPE_t, INPUT_DTYPE
    #
    # We also use the float64 dtype and C-type names as defined in
    # `sklearn.utils._typedefs` to maintain consistency.
    #
    ('64', False, 'float64_t', 'np.float64'),
    ('32', True, 'float32_t', 'np.float32')
]
}}
from libcpp.vector cimport vector
from libcpp.algorithm cimport fill
from ...utils._cython_blas cimport (
  BLAS_Order,
  BLAS_Trans,
  NoTrans,
  RowMajor,
  Trans,
  _gemm,
)
from ...utils._typedefs cimport float64_t, float32_t, int32_t, intp_t
import numpy as np
from scipy.sparse import issparse, csr_matrix
cdef void _middle_term_sparse_sparse_64(
    const float64_t[:] X_data,
    const int32_t[:] X_indices,
    const int32_t[:] X_indptr,
    intp_t X_start,
    intp_t X_end,
    const float64_t[:] Y_data,
    const int32_t[:] Y_indices,
    const int32_t[:] Y_indptr,
    intp_t Y_start,
    intp_t Y_end,
    float64_t * D,
) noexcept nogil:
    # This routine assumes that D points to the first element of a
    # zeroed buffer of length at least equal to n_X × n_Y, conceptually
    # representing a 2-d C-ordered array.
    cdef:
        intp_t i, j, k
        intp_t n_X = X_end - X_start
        intp_t n_Y = Y_end - Y_start
        intp_t x_col, x_ptr, y_col, y_ptr
    for i in range(n_X):
        for x_ptr in range(X_indptr[X_start+i], X_indptr[X_start+i+1]):
            x_col = X_indices[x_ptr]
            for j in range(n_Y):
                k = i * n_Y + j
                for y_ptr in range(Y_indptr[Y_start+j], Y_indptr[Y_start+j+1]):
                    y_col = Y_indices[y_ptr]
                    if x_col == y_col:
                        D[k] += -2 * X_data[x_ptr] * Y_data[y_ptr]
{{for name_suffix, upcast_to_float64, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}
cdef void _middle_term_sparse_dense_{{name_suffix}}(
    const float64_t[:] X_data,
    const int32_t[:] X_indices,
    const int32_t[:] X_indptr,
    intp_t X_start,
    intp_t X_end,
    const {{INPUT_DTYPE_t}}[:, ::1] Y,
    intp_t Y_start,
    intp_t Y_end,
    bint c_ordered_middle_term,
    float64_t * dist_middle_terms,
) noexcept nogil:
    # This routine assumes that dist_middle_terms is a pointer to the first element
    # of a buffer filled with zeros of length at least equal to n_X × n_Y, conceptually
    # representing a 2-d C-ordered of F-ordered array.
    cdef:
        intp_t i, j, k
        intp_t n_X = X_end - X_start
        intp_t n_Y = Y_end - Y_start
        intp_t X_i_col_idx, X_i_ptr, Y_j_col_idx, Y_j_ptr
    for i in range(n_X):
        for j in range(n_Y):
            k = i * n_Y + j if c_ordered_middle_term else j * n_X + i
            for X_i_ptr in range(X_indptr[X_start+i], X_indptr[X_start+i+1]):
                X_i_col_idx = X_indices[X_i_ptr]
                dist_middle_terms[k] += -2 * X_data[X_i_ptr] * Y[Y_start + j, X_i_col_idx]
cdef class MiddleTermComputer{{name_suffix}}:
    """Helper class to compute a Euclidean distance matrix in chunks.
    This is an abstract base class that is further specialized depending
    on the type of data (dense or sparse).
    `EuclideanDistance` subclasses relies on the squared Euclidean
    distances between chunks of vectors X_c and Y_c using the
    following decomposition for the (i,j) pair :
         ||X_c_i - Y_c_j||² = ||X_c_i||² - 2 X_c_i.Y_c_j^T + ||Y_c_j||²
    This helper class is in charge of wrapping the common logic to compute
    the middle term, i.e. `- 2 X_c_i.Y_c_j^T`.
    """
    @classmethod
    def get_for(
        cls,
        X,
        Y,
        effective_n_threads,
        chunks_n_threads,
        dist_middle_terms_chunks_size,
        n_features,
        chunk_size,
    ) -> MiddleTermComputer{{name_suffix}}:
        """Return the MiddleTermComputer implementation for the given arguments.
        Parameters
        ----------
        X : ndarray or CSR sparse matrix of shape (n_samples_X, n_features)
            Input data.
            If provided as a ndarray, it must be C-contiguous.
        Y : ndarray or CSR sparse matrix of shape (n_samples_Y, n_features)
            Input data.
            If provided as a ndarray, it must be C-contiguous.
        Returns
        -------
        middle_term_computer: MiddleTermComputer{{name_suffix}}
            The suited MiddleTermComputer{{name_suffix}} implementation.
        """
        X_is_sparse = issparse(X)
        Y_is_sparse = issparse(Y)
        if not X_is_sparse and not Y_is_sparse:
            return DenseDenseMiddleTermComputer{{name_suffix}}(
                X,
                Y,
                effective_n_threads,
                chunks_n_threads,
                dist_middle_terms_chunks_size,
                n_features,
                chunk_size,
            )
        if X_is_sparse and Y_is_sparse:
            return SparseSparseMiddleTermComputer{{name_suffix}}(
                X,
                Y,
                effective_n_threads,
                chunks_n_threads,
                dist_middle_terms_chunks_size,
                n_features,
                chunk_size,
            )
        if X_is_sparse and not Y_is_sparse:
            return SparseDenseMiddleTermComputer{{name_suffix}}(
                X,
                Y,
                effective_n_threads,
                chunks_n_threads,
                dist_middle_terms_chunks_size,
                n_features,
                chunk_size,
                c_ordered_middle_term=True
            )
        if not X_is_sparse and Y_is_sparse:
            # NOTE: The Dense-Sparse case is implement via the Sparse-Dense case.
            #
            # To do so:
            #    - X (dense) and Y (sparse) are swapped
            #    - the distance middle term is seen as F-ordered for consistency
            #      (c_ordered_middle_term = False)
            return SparseDenseMiddleTermComputer{{name_suffix}}(
                # Mind that X and Y are swapped here.
                Y,
                X,
                effective_n_threads,
                chunks_n_threads,
                dist_middle_terms_chunks_size,
                n_features,
                chunk_size,
                c_ordered_middle_term=False,
            )
        raise NotImplementedError(
            "X and Y must be CSR sparse matrices or numpy arrays."
        )
    @classmethod
    def unpack_csr_matrix(cls, X: csr_matrix):
        """Ensure that the CSR matrix is indexed with np.int32."""
        X_data = np.asarray(X.data, dtype=np.float64)
        X_indices = np.asarray(X.indices, dtype=np.int32)
        X_indptr = np.asarray(X.indptr, dtype=np.int32)
        return X_data, X_indices, X_indptr
    def __init__(
        self,
        intp_t effective_n_threads,
        intp_t chunks_n_threads,
        intp_t dist_middle_terms_chunks_size,
        intp_t n_features,
        intp_t chunk_size,
    ):
        self.effective_n_threads = effective_n_threads
        self.chunks_n_threads = chunks_n_threads
        self.dist_middle_terms_chunks_size = dist_middle_terms_chunks_size
        self.n_features = n_features
        self.chunk_size = chunk_size
        self.dist_middle_terms_chunks = vector[vector[float64_t]](self.effective_n_threads)
    cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        return
    cdef void _parallel_on_X_parallel_init(self, intp_t thread_num) noexcept nogil:
        self.dist_middle_terms_chunks[thread_num].resize(self.dist_middle_terms_chunks_size)
    cdef void _parallel_on_X_init_chunk(
        self,
        intp_t thread_num,
        intp_t X_start,
        intp_t X_end,
    ) noexcept nogil:
        return
    cdef void _parallel_on_Y_init(self) noexcept nogil:
        for thread_num in range(self.chunks_n_threads):
            self.dist_middle_terms_chunks[thread_num].resize(
                self.dist_middle_terms_chunks_size
            )
    cdef void _parallel_on_Y_parallel_init(
        self,
        intp_t thread_num,
        intp_t X_start,
        intp_t X_end,
    ) noexcept nogil:
        return
    cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num
    ) noexcept nogil:
        return
    cdef float64_t * _compute_dist_middle_terms(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        return NULL
cdef class DenseDenseMiddleTermComputer{{name_suffix}}(MiddleTermComputer{{name_suffix}}):
    """Computes the middle term of the Euclidean distance between two chunked dense matrices
    X_c and Y_c.
                        dist_middle_terms = - 2 X_c_i.Y_c_j^T
    This class use the BLAS gemm routine to perform the dot product of each chunks
    of the distance matrix with improved arithmetic intensity and vector instruction (SIMD).
    """
    def __init__(
        self,
        const {{INPUT_DTYPE_t}}[:, ::1] X,
        const {{INPUT_DTYPE_t}}[:, ::1] Y,
        intp_t effective_n_threads,
        intp_t chunks_n_threads,
        intp_t dist_middle_terms_chunks_size,
        intp_t n_features,
        intp_t chunk_size,
    ):
        super().__init__(
            effective_n_threads,
            chunks_n_threads,
            dist_middle_terms_chunks_size,
            n_features,
            chunk_size,
        )
        self.X = X
        self.Y = Y
{{if upcast_to_float64}}
        # We populate the buffer for upcasting chunks of X and Y from float32 to float64.
        self.X_c_upcast = vector[vector[float64_t]](self.effective_n_threads)
        self.Y_c_upcast = vector[vector[float64_t]](self.effective_n_threads)
        upcast_buffer_n_elements = self.chunk_size * n_features
        for thread_num in range(self.effective_n_threads):
            self.X_c_upcast[thread_num].resize(upcast_buffer_n_elements)
            self.Y_c_upcast[thread_num].resize(upcast_buffer_n_elements)
{{endif}}
    cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
{{if upcast_to_float64}}
        cdef:
            intp_t i, j
            intp_t n_chunk_samples = Y_end - Y_start
        # Upcasting Y_c=Y[Y_start:Y_end, :] from float32 to float64
        for i in range(n_chunk_samples):
            for j in range(self.n_features):
                self.Y_c_upcast[thread_num][i * self.n_features + j] = <float64_t> self.Y[Y_start + i, j]
{{else}}
        return
{{endif}}
    cdef void _parallel_on_X_init_chunk(
        self,
        intp_t thread_num,
        intp_t X_start,
        intp_t X_end,
    ) noexcept nogil:
{{if upcast_to_float64}}
        cdef:
            intp_t i, j
            intp_t n_chunk_samples = X_end - X_start
        # Upcasting X_c=X[X_start:X_end, :] from float32 to float64
        for i in range(n_chunk_samples):
            for j in range(self.n_features):
                self.X_c_upcast[thread_num][i * self.n_features + j] = <float64_t> self.X[X_start + i, j]
{{else}}
        return
{{endif}}
    cdef void _parallel_on_Y_parallel_init(
        self,
        intp_t thread_num,
        intp_t X_start,
        intp_t X_end,
    ) noexcept nogil:
{{if upcast_to_float64}}
        cdef:
            intp_t i, j
            intp_t n_chunk_samples = X_end - X_start
        # Upcasting X_c=X[X_start:X_end, :] from float32 to float64
        for i in range(n_chunk_samples):
            for j in range(self.n_features):
                self.X_c_upcast[thread_num][i * self.n_features + j] = <float64_t> self.X[X_start + i, j]
{{else}}
        return
{{endif}}
    cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num
    ) noexcept nogil:
{{if upcast_to_float64}}
        cdef:
            intp_t i, j
            intp_t n_chunk_samples = Y_end - Y_start
        # Upcasting Y_c=Y[Y_start:Y_end, :] from float32 to float64
        for i in range(n_chunk_samples):
            for j in range(self.n_features):
                self.Y_c_upcast[thread_num][i * self.n_features + j] = <float64_t> self.Y[Y_start + i, j]
{{else}}
        return
{{endif}}
    cdef float64_t * _compute_dist_middle_terms(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        cdef:
            float64_t *dist_middle_terms = self.dist_middle_terms_chunks[thread_num].data()
            # Careful: LDA, LDB and LDC are given for F-ordered arrays
            # in BLAS documentations, for instance:
            # https://www.netlib.org/lapack/explore-html/db/dc9/group__single__blas__level3_gafe51bacb54592ff5de056acabd83c260.html #noqa
            #
            # Here, we use their counterpart values to work with C-ordered arrays.
            BLAS_Order order = RowMajor
            BLAS_Trans ta = NoTrans
            BLAS_Trans tb = Trans
            intp_t m = X_end - X_start
            intp_t n = Y_end - Y_start
            intp_t K = self.n_features
            float64_t alpha = - 2.
{{if upcast_to_float64}}
            float64_t * A = self.X_c_upcast[thread_num].data()
            float64_t * B = self.Y_c_upcast[thread_num].data()
{{else}}
            # Casting for A and B to remove the const is needed because APIs exposed via
            # scipy.linalg.cython_blas aren't reflecting the arguments' const qualifier.
            # See: https://github.com/scipy/scipy/issues/14262
            float64_t * A = <float64_t *> &self.X[X_start, 0]
            float64_t * B = <float64_t *> &self.Y[Y_start, 0]
{{endif}}
            intp_t lda = self.n_features
            intp_t ldb = self.n_features
            float64_t beta = 0.
            intp_t ldc = Y_end - Y_start
        # dist_middle_terms = `-2 * X[X_start:X_end] @ Y[Y_start:Y_end].T`
        _gemm(order, ta, tb, m, n, K, alpha, A, lda, B, ldb, beta, dist_middle_terms, ldc)
        return dist_middle_terms
cdef class SparseSparseMiddleTermComputer{{name_suffix}}(MiddleTermComputer{{name_suffix}}):
    """Middle term of the Euclidean distance between two chunked CSR matrices.
    The result is return as a contiguous array.
            dist_middle_terms = - 2 X_c_i.Y_c_j^T
    The logic of the computation is wrapped in the routine _middle_term_sparse_sparse_64.
    This routine iterates over the data, indices and indptr arrays of the sparse matrices without
    densifying them.
    """
    def __init__(
        self,
        X,
        Y,
        intp_t effective_n_threads,
        intp_t chunks_n_threads,
        intp_t dist_middle_terms_chunks_size,
        intp_t n_features,
        intp_t chunk_size,
    ):
        super().__init__(
            effective_n_threads,
            chunks_n_threads,
            dist_middle_terms_chunks_size,
            n_features,
            chunk_size,
        )
        self.X_data, self.X_indices, self.X_indptr = self.unpack_csr_matrix(X)
        self.Y_data, self.Y_indices, self.Y_indptr = self.unpack_csr_matrix(Y)
    cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        # Flush the thread dist_middle_terms_chunks to 0.0
        fill(
            self.dist_middle_terms_chunks[thread_num].begin(),
            self.dist_middle_terms_chunks[thread_num].end(),
            0.0,
        )
    cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        # Flush the thread dist_middle_terms_chunks to 0.0
        fill(
            self.dist_middle_terms_chunks[thread_num].begin(),
            self.dist_middle_terms_chunks[thread_num].end(),
            0.0,
        )
    cdef float64_t * _compute_dist_middle_terms(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        cdef:
            float64_t *dist_middle_terms = (
                self.dist_middle_terms_chunks[thread_num].data()
            )
        _middle_term_sparse_sparse_64(
            self.X_data,
            self.X_indices,
            self.X_indptr,
            X_start,
            X_end,
            self.Y_data,
            self.Y_indices,
            self.Y_indptr,
            Y_start,
            Y_end,
            dist_middle_terms,
        )
        return dist_middle_terms
cdef class SparseDenseMiddleTermComputer{{name_suffix}}(MiddleTermComputer{{name_suffix}}):
    """Middle term of the Euclidean distance between chunks of a CSR matrix and a np.ndarray.
    The logic of the computation is wrapped in the routine _middle_term_sparse_dense_{{name_suffix}}.
    This routine iterates over the data, indices and indptr arrays of the sparse matrices
    without densifying them.
    """
    def __init__(
        self,
        X,
        Y,
        intp_t effective_n_threads,
        intp_t chunks_n_threads,
        intp_t dist_middle_terms_chunks_size,
        intp_t n_features,
        intp_t chunk_size,
        bint c_ordered_middle_term,
    ):
        super().__init__(
            effective_n_threads,
            chunks_n_threads,
            dist_middle_terms_chunks_size,
            n_features,
            chunk_size,
        )
        self.X_data, self.X_indices, self.X_indptr = self.unpack_csr_matrix(X)
        self.Y = Y
        self.c_ordered_middle_term = c_ordered_middle_term
    cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        # Fill the thread's dist_middle_terms_chunks with 0.0 before
        # computing its elements in _compute_dist_middle_terms.
        fill(
            self.dist_middle_terms_chunks[thread_num].begin(),
            self.dist_middle_terms_chunks[thread_num].end(),
            0.0,
        )
    cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        # Fill the thread's dist_middle_terms_chunks with 0.0 before
        # computing its elements in _compute_dist_middle_terms.
        fill(
            self.dist_middle_terms_chunks[thread_num].begin(),
            self.dist_middle_terms_chunks[thread_num].end(),
            0.0,
        )
    cdef float64_t * _compute_dist_middle_terms(
        self,
        intp_t X_start,
        intp_t X_end,
        intp_t Y_start,
        intp_t Y_end,
        intp_t thread_num,
    ) noexcept nogil:
        cdef:
            float64_t *dist_middle_terms = (
                self.dist_middle_terms_chunks[thread_num].data()
            )
        # For the dense-sparse case, we use the sparse-dense case
        # with dist_middle_terms seen as F-ordered.
        # Hence we swap indices pointers here.
        if not self.c_ordered_middle_term:
            X_start, Y_start = Y_start, X_start
            X_end, Y_end = Y_end, X_end
        _middle_term_sparse_dense_{{name_suffix}}(
            self.X_data,
            self.X_indices,
            self.X_indptr,
            X_start,
            X_end,
            self.Y,
            Y_start,
            Y_end,
            self.c_ordered_middle_term,
            dist_middle_terms,
        )
        return dist_middle_terms
{{endfor}}
 |