1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
import numpy as np
from ...utils import _safe_indexing
from ...utils._plotting import (
_BinaryClassifierCurveDisplayMixin,
_check_param_lengths,
_convert_to_list_leaving_none,
_deprecate_estimator_name,
_despine,
_validate_style_kwargs,
)
from ...utils._response import _get_response_values_binary
from .._ranking import auc, roc_curve
class RocCurveDisplay(_BinaryClassifierCurveDisplayMixin):
"""ROC Curve visualization.
It is recommended to use
:func:`~sklearn.metrics.RocCurveDisplay.from_estimator` or
:func:`~sklearn.metrics.RocCurveDisplay.from_predictions` or
:func:`~sklearn.metrics.RocCurveDisplay.from_cv_results` to create
a :class:`~sklearn.metrics.RocCurveDisplay`. All parameters are
stored as attributes.
For general information regarding `scikit-learn` visualization tools, see
the :ref:`Visualization Guide <visualizations>`.
For guidance on interpreting these plots, refer to the :ref:`Model
Evaluation Guide <roc_metrics>`.
Parameters
----------
fpr : ndarray or list of ndarrays
False positive rates. Each ndarray should contain values for a single curve.
If plotting multiple curves, list should be of same length as `tpr`.
.. versionchanged:: 1.7
Now accepts a list for plotting multiple curves.
tpr : ndarray or list of ndarrays
True positive rates. Each ndarray should contain values for a single curve.
If plotting multiple curves, list should be of same length as `fpr`.
.. versionchanged:: 1.7
Now accepts a list for plotting multiple curves.
roc_auc : float or list of floats, default=None
Area under ROC curve, used for labeling each curve in the legend.
If plotting multiple curves, should be a list of the same length as `fpr`
and `tpr`. If `None`, ROC AUC scores are not shown in the legend.
.. versionchanged:: 1.7
Now accepts a list for plotting multiple curves.
name : str or list of str, default=None
Name for labeling legend entries. The number of legend entries is determined
by the `curve_kwargs` passed to `plot`, and is not affected by `name`.
To label each curve, provide a list of strings. To avoid labeling
individual curves that have the same appearance, this cannot be used in
conjunction with `curve_kwargs` being a dictionary or None. If a
string is provided, it will be used to either label the single legend entry
or if there are multiple legend entries, label each individual curve with
the same name. If still `None`, no name is shown in the legend.
.. versionadded:: 1.7
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing the roc auc
metrics. By default, `estimators.classes_[1]` is considered
as the positive class.
.. versionadded:: 0.24
estimator_name : str, default=None
Name of estimator. If None, the estimator name is not shown.
.. deprecated:: 1.7
`estimator_name` is deprecated and will be removed in 1.9. Use `name`
instead.
Attributes
----------
line_ : matplotlib Artist or list of matplotlib Artists
ROC Curves.
.. versionchanged:: 1.7
This attribute can now be a list of Artists, for when multiple curves
are plotted.
chance_level_ : matplotlib Artist or None
The chance level line. It is `None` if the chance level is not plotted.
.. versionadded:: 1.3
ax_ : matplotlib Axes
Axes with ROC Curve.
figure_ : matplotlib Figure
Figure containing the curve.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
(ROC) curve given an estimator and some data.
RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
(ROC) curve given the true and predicted values.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sklearn import metrics
>>> y_true = np.array([0, 0, 1, 1])
>>> y_score = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score)
>>> roc_auc = metrics.auc(fpr, tpr)
>>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,
... name='example estimator')
>>> display.plot()
<...>
>>> plt.show()
"""
def __init__(
self,
*,
fpr,
tpr,
roc_auc=None,
name=None,
pos_label=None,
estimator_name="deprecated",
):
self.fpr = fpr
self.tpr = tpr
self.roc_auc = roc_auc
self.name = _deprecate_estimator_name(estimator_name, name, "1.7")
self.pos_label = pos_label
def _validate_plot_params(self, *, ax, name):
self.ax_, self.figure_, name = super()._validate_plot_params(ax=ax, name=name)
fpr = _convert_to_list_leaving_none(self.fpr)
tpr = _convert_to_list_leaving_none(self.tpr)
roc_auc = _convert_to_list_leaving_none(self.roc_auc)
name = _convert_to_list_leaving_none(name)
optional = {"self.roc_auc": roc_auc}
if isinstance(name, list) and len(name) != 1:
optional.update({"'name' (or self.name)": name})
_check_param_lengths(
required={"self.fpr": fpr, "self.tpr": tpr},
optional=optional,
class_name="RocCurveDisplay",
)
return fpr, tpr, roc_auc, name
def plot(
self,
ax=None,
*,
name=None,
curve_kwargs=None,
plot_chance_level=False,
chance_level_kw=None,
despine=False,
**kwargs,
):
"""Plot visualization.
Parameters
----------
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str or list of str, default=None
Name for labeling legend entries. The number of legend entries
is determined by `curve_kwargs`, and is not affected by `name`.
To label each curve, provide a list of strings. To avoid labeling
individual curves that have the same appearance, this cannot be used in
conjunction with `curve_kwargs` being a dictionary or None. If a
string is provided, it will be used to either label the single legend entry
or if there are multiple legend entries, label each individual curve with
the same name. If `None`, set to `name` provided at `RocCurveDisplay`
initialization. If still `None`, no name is shown in the legend.
.. versionadded:: 1.7
curve_kwargs : dict or list of dict, default=None
Keywords arguments to be passed to matplotlib's `plot` function
to draw individual ROC curves. For single curve plotting, should be
a dictionary. For multi-curve plotting, if a list is provided the
parameters are applied to the ROC curves of each CV fold
sequentially and a legend entry is added for each curve.
If a single dictionary is provided, the same parameters are applied
to all ROC curves and a single legend entry for all curves is added,
labeled with the mean ROC AUC score.
.. versionadded:: 1.7
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
despine : bool, default=False
Whether to remove the top and right spines from the plot.
.. versionadded:: 1.6
**kwargs : dict
Keyword arguments to be passed to matplotlib's `plot`.
.. deprecated:: 1.7
kwargs is deprecated and will be removed in 1.9. Pass matplotlib
arguments to `curve_kwargs` as a dictionary instead.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
Object that stores computed values.
"""
fpr, tpr, roc_auc, name = self._validate_plot_params(ax=ax, name=name)
n_curves = len(fpr)
if not isinstance(curve_kwargs, list) and n_curves > 1:
if roc_auc:
legend_metric = {"mean": np.mean(roc_auc), "std": np.std(roc_auc)}
else:
legend_metric = {"mean": None, "std": None}
else:
roc_auc = roc_auc if roc_auc is not None else [None] * n_curves
legend_metric = {"metric": roc_auc}
curve_kwargs = self._validate_curve_kwargs(
n_curves,
name,
legend_metric,
"AUC",
curve_kwargs=curve_kwargs,
**kwargs,
)
default_chance_level_line_kw = {
"label": "Chance level (AUC = 0.5)",
"color": "k",
"linestyle": "--",
}
if chance_level_kw is None:
chance_level_kw = {}
chance_level_kw = _validate_style_kwargs(
default_chance_level_line_kw, chance_level_kw
)
self.line_ = []
for fpr, tpr, line_kw in zip(fpr, tpr, curve_kwargs):
self.line_.extend(self.ax_.plot(fpr, tpr, **line_kw))
# Return single artist if only one curve is plotted
if len(self.line_) == 1:
self.line_ = self.line_[0]
info_pos_label = (
f" (Positive label: {self.pos_label})" if self.pos_label is not None else ""
)
xlabel = "False Positive Rate" + info_pos_label
ylabel = "True Positive Rate" + info_pos_label
self.ax_.set(
xlabel=xlabel,
xlim=(-0.01, 1.01),
ylabel=ylabel,
ylim=(-0.01, 1.01),
aspect="equal",
)
if plot_chance_level:
(self.chance_level_,) = self.ax_.plot((0, 1), (0, 1), **chance_level_kw)
else:
self.chance_level_ = None
if despine:
_despine(self.ax_)
if curve_kwargs[0].get("label") is not None or (
plot_chance_level and chance_level_kw.get("label") is not None
):
self.ax_.legend(loc="lower right")
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
sample_weight=None,
drop_intermediate=True,
response_method="auto",
pos_label=None,
name=None,
ax=None,
curve_kwargs=None,
plot_chance_level=False,
chance_level_kw=None,
despine=False,
**kwargs,
):
"""Create a ROC Curve display from an estimator.
For general information regarding `scikit-learn` visualization tools,
see the :ref:`Visualization Guide <visualizations>`.
For guidance on interpreting these plots, refer to the :ref:`Model
Evaluation Guide <roc_metrics>`.
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : bool, default=True
Whether to drop thresholds where the resulting point is collinear
with its neighbors in ROC space. This has no effect on the ROC AUC
or visual shape of the curve, but reduces the number of plotted
points.
response_method : {'predict_proba', 'decision_function', 'auto'} \
default='auto'
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing the ROC AUC.
By default, `estimators.classes_[1]` is considered
as the positive class.
name : str, default=None
Name of ROC Curve for labeling. If `None`, use the name of the
estimator.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is created.
curve_kwargs : dict, default=None
Keywords arguments to be passed to matplotlib's `plot` function.
.. versionadded:: 1.7
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
despine : bool, default=False
Whether to remove the top and right spines from the plot.
.. versionadded:: 1.6
**kwargs : dict
Keyword arguments to be passed to matplotlib's `plot`.
.. deprecated:: 1.7
kwargs is deprecated and will be removed in 1.9. Pass matplotlib
arguments to `curve_kwargs` as a dictionary instead.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
The ROC Curve display.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_predictions : ROC Curve visualization given the
probabilities of scores of a classifier.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import RocCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> RocCurveDisplay.from_estimator(
... clf, X_test, y_test)
<...>
>>> plt.show()
"""
y_score, pos_label, name = cls._validate_and_get_response_values(
estimator,
X,
y,
response_method=response_method,
pos_label=pos_label,
name=name,
)
return cls.from_predictions(
y_true=y,
y_score=y_score,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
name=name,
ax=ax,
curve_kwargs=curve_kwargs,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
despine=despine,
**kwargs,
)
@classmethod
def from_predictions(
cls,
y_true,
y_score=None,
*,
sample_weight=None,
drop_intermediate=True,
pos_label=None,
name=None,
ax=None,
curve_kwargs=None,
plot_chance_level=False,
chance_level_kw=None,
despine=False,
y_pred="deprecated",
**kwargs,
):
"""Plot ROC curve given the true and predicted values.
For general information regarding `scikit-learn` visualization tools,
see the :ref:`Visualization Guide <visualizations>`.
For guidance on interpreting these plots, refer to the :ref:`Model
Evaluation Guide <roc_metrics>`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_score : array-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).
.. versionadded:: 1.7
`y_pred` has been renamed to `y_score`.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : bool, default=True
Whether to drop thresholds where the resulting point is collinear
with its neighbors in ROC space. This has no effect on the ROC AUC
or visual shape of the curve, but reduces the number of plotted
points.
pos_label : int, float, bool or str, default=None
The label of the positive class when computing the ROC AUC.
When `pos_label=None`, if `y_true` is in {-1, 1} or {0, 1}, `pos_label`
is set to 1, otherwise an error will be raised.
name : str, default=None
Name of ROC curve for legend labeling. If `None`, name will be set to
`"Classifier"`.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
curve_kwargs : dict, default=None
Keywords arguments to be passed to matplotlib's `plot` function.
.. versionadded:: 1.7
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
despine : bool, default=False
Whether to remove the top and right spines from the plot.
.. versionadded:: 1.6
y_pred : array-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).
.. deprecated:: 1.7
`y_pred` is deprecated and will be removed in 1.9. Use
`y_score` instead.
**kwargs : dict
Additional keywords arguments passed to matplotlib `plot` function.
.. deprecated:: 1.7
kwargs is deprecated and will be removed in 1.9. Pass matplotlib
arguments to `curve_kwargs` as a dictionary instead.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
Object that stores computed values.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator : ROC Curve visualization given an
estimator and some data.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import RocCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> y_score = clf.decision_function(X_test)
>>> RocCurveDisplay.from_predictions(y_test, y_score)
<...>
>>> plt.show()
"""
# TODO(1.9): remove after the end of the deprecation period of `y_pred`
if y_score is not None and not (
isinstance(y_pred, str) and y_pred == "deprecated"
):
raise ValueError(
"`y_pred` and `y_score` cannot be both specified. Please use `y_score`"
" only as `y_pred` is deprecated in 1.7 and will be removed in 1.9."
)
if not (isinstance(y_pred, str) and y_pred == "deprecated"):
warnings.warn(
(
"y_pred is deprecated in 1.7 and will be removed in 1.9. "
"Please use `y_score` instead."
),
FutureWarning,
)
y_score = y_pred
pos_label_validated, name = cls._validate_from_predictions_params(
y_true, y_score, sample_weight=sample_weight, pos_label=pos_label, name=name
)
fpr, tpr, _ = roc_curve(
y_true,
y_score,
pos_label=pos_label,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
)
roc_auc = auc(fpr, tpr)
viz = cls(
fpr=fpr,
tpr=tpr,
roc_auc=roc_auc,
name=name,
pos_label=pos_label_validated,
)
return viz.plot(
ax=ax,
curve_kwargs=curve_kwargs,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
despine=despine,
**kwargs,
)
@classmethod
def from_cv_results(
cls,
cv_results,
X,
y,
*,
sample_weight=None,
drop_intermediate=True,
response_method="auto",
pos_label=None,
ax=None,
name=None,
curve_kwargs=None,
plot_chance_level=False,
chance_level_kwargs=None,
despine=False,
):
"""Create a multi-fold ROC curve display given cross-validation results.
.. versionadded:: 1.7
Parameters
----------
cv_results : dict
Dictionary as returned by :func:`~sklearn.model_selection.cross_validate`
using `return_estimator=True` and `return_indices=True` (i.e., dictionary
should contain the keys "estimator" and "indices").
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : bool, default=True
Whether to drop some suboptimal thresholds which would not appear
on a plotted ROC curve. This is useful in order to create lighter
ROC curves.
response_method : {'predict_proba', 'decision_function', 'auto'} \
default='auto'
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing the ROC AUC
metrics. By default, `estimators.classes_[1]` is considered
as the positive class.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str or list of str, default=None
Name for labeling legend entries. The number of legend entries
is determined by `curve_kwargs`, and is not affected by `name`.
To label each curve, provide a list of strings. To avoid labeling
individual curves that have the same appearance, this cannot be used in
conjunction with `curve_kwargs` being a dictionary or None. If a
string is provided, it will be used to either label the single legend entry
or if there are multiple legend entries, label each individual curve with
the same name. If `None`, no name is shown in the legend.
curve_kwargs : dict or list of dict, default=None
Keywords arguments to be passed to matplotlib's `plot` function
to draw individual ROC curves. If a list is provided the
parameters are applied to the ROC curves of each CV fold
sequentially and a legend entry is added for each curve.
If a single dictionary is provided, the same parameters are applied
to all ROC curves and a single legend entry for all curves is added,
labeled with the mean ROC AUC score.
plot_chance_level : bool, default=False
Whether to plot the chance level.
chance_level_kwargs : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
despine : bool, default=False
Whether to remove the top and right spines from the plot.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
The multi-fold ROC curve display.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator : ROC Curve visualization given an
estimator and some data.
RocCurveDisplay.from_predictions : ROC Curve visualization given the
probabilities of scores of a classifier.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import RocCurveDisplay
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> clf = SVC(random_state=0)
>>> cv_results = cross_validate(
... clf, X, y, cv=3, return_estimator=True, return_indices=True)
>>> RocCurveDisplay.from_cv_results(cv_results, X, y)
<...>
>>> plt.show()
"""
pos_label_ = cls._validate_from_cv_results_params(
cv_results,
X,
y,
sample_weight=sample_weight,
pos_label=pos_label,
)
fpr_folds, tpr_folds, auc_folds = [], [], []
for estimator, test_indices in zip(
cv_results["estimator"], cv_results["indices"]["test"]
):
y_true = _safe_indexing(y, test_indices)
y_pred, _ = _get_response_values_binary(
estimator,
_safe_indexing(X, test_indices),
response_method=response_method,
pos_label=pos_label_,
)
sample_weight_fold = (
None
if sample_weight is None
else _safe_indexing(sample_weight, test_indices)
)
fpr, tpr, _ = roc_curve(
y_true,
y_pred,
pos_label=pos_label_,
sample_weight=sample_weight_fold,
drop_intermediate=drop_intermediate,
)
roc_auc = auc(fpr, tpr)
fpr_folds.append(fpr)
tpr_folds.append(tpr)
auc_folds.append(roc_auc)
viz = cls(
fpr=fpr_folds,
tpr=tpr_folds,
roc_auc=auc_folds,
name=name,
pos_label=pos_label_,
)
return viz.plot(
ax=ax,
curve_kwargs=curve_kwargs,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kwargs,
despine=despine,
)
|