File: test_confusion_matrix_display.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (374 lines) | stat: -rw-r--r-- 13,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import numpy as np
import pytest
from numpy.testing import (
    assert_allclose,
    assert_array_equal,
)

from sklearn.compose import make_column_transformer
from sklearn.datasets import make_classification
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC, SVR


def test_confusion_matrix_display_validation(pyplot):
    """Check that we raise the proper error when validating parameters."""
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=5, random_state=0
    )

    with pytest.raises(NotFittedError):
        ConfusionMatrixDisplay.from_estimator(SVC(), X, y)

    regressor = SVR().fit(X, y)
    y_pred_regressor = regressor.predict(X)
    y_pred_classifier = SVC().fit(X, y).predict(X)

    err_msg = "ConfusionMatrixDisplay.from_estimator only supports classifiers"
    with pytest.raises(ValueError, match=err_msg):
        ConfusionMatrixDisplay.from_estimator(regressor, X, y)

    err_msg = "Mix type of y not allowed, got types"
    with pytest.raises(ValueError, match=err_msg):
        # Force `y_true` to be seen as a regression problem
        ConfusionMatrixDisplay.from_predictions(y + 0.5, y_pred_classifier)
    with pytest.raises(ValueError, match=err_msg):
        ConfusionMatrixDisplay.from_predictions(y, y_pred_regressor)

    err_msg = "Found input variables with inconsistent numbers of samples"
    with pytest.raises(ValueError, match=err_msg):
        ConfusionMatrixDisplay.from_predictions(y, y_pred_classifier[::2])


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
@pytest.mark.parametrize("with_labels", [True, False])
@pytest.mark.parametrize("with_display_labels", [True, False])
def test_confusion_matrix_display_custom_labels(
    pyplot, constructor_name, with_labels, with_display_labels
):
    """Check the resulting plot when labels are given."""
    n_classes = 5
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=n_classes, random_state=0
    )
    classifier = SVC().fit(X, y)
    y_pred = classifier.predict(X)

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    ax = pyplot.gca()
    labels = [2, 1, 0, 3, 4] if with_labels else None
    display_labels = ["b", "d", "a", "e", "f"] if with_display_labels else None

    cm = confusion_matrix(y, y_pred, labels=labels)
    common_kwargs = {
        "ax": ax,
        "display_labels": display_labels,
        "labels": labels,
    }
    if constructor_name == "from_estimator":
        disp = ConfusionMatrixDisplay.from_estimator(classifier, X, y, **common_kwargs)
    else:
        disp = ConfusionMatrixDisplay.from_predictions(y, y_pred, **common_kwargs)
    assert_allclose(disp.confusion_matrix, cm)

    if with_display_labels:
        expected_display_labels = display_labels
    elif with_labels:
        expected_display_labels = labels
    else:
        expected_display_labels = list(range(n_classes))

    expected_display_labels_str = [str(name) for name in expected_display_labels]

    x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()]

    assert_array_equal(disp.display_labels, expected_display_labels)
    assert_array_equal(x_ticks, expected_display_labels_str)
    assert_array_equal(y_ticks, expected_display_labels_str)


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
@pytest.mark.parametrize("normalize", ["true", "pred", "all", None])
@pytest.mark.parametrize("include_values", [True, False])
def test_confusion_matrix_display_plotting(
    pyplot,
    constructor_name,
    normalize,
    include_values,
):
    """Check the overall plotting rendering."""
    n_classes = 5
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=n_classes, random_state=0
    )
    classifier = SVC().fit(X, y)
    y_pred = classifier.predict(X)

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    ax = pyplot.gca()
    cmap = "plasma"

    cm = confusion_matrix(y, y_pred)
    common_kwargs = {
        "normalize": normalize,
        "cmap": cmap,
        "ax": ax,
        "include_values": include_values,
    }
    if constructor_name == "from_estimator":
        disp = ConfusionMatrixDisplay.from_estimator(classifier, X, y, **common_kwargs)
    else:
        disp = ConfusionMatrixDisplay.from_predictions(y, y_pred, **common_kwargs)

    assert disp.ax_ == ax

    if normalize == "true":
        cm = cm / cm.sum(axis=1, keepdims=True)
    elif normalize == "pred":
        cm = cm / cm.sum(axis=0, keepdims=True)
    elif normalize == "all":
        cm = cm / cm.sum()

    assert_allclose(disp.confusion_matrix, cm)
    import matplotlib as mpl

    assert isinstance(disp.im_, mpl.image.AxesImage)
    assert disp.im_.get_cmap().name == cmap
    assert isinstance(disp.ax_, pyplot.Axes)
    assert isinstance(disp.figure_, pyplot.Figure)

    assert disp.ax_.get_ylabel() == "True label"
    assert disp.ax_.get_xlabel() == "Predicted label"

    x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()]

    expected_display_labels = list(range(n_classes))

    expected_display_labels_str = [str(name) for name in expected_display_labels]

    assert_array_equal(disp.display_labels, expected_display_labels)
    assert_array_equal(x_ticks, expected_display_labels_str)
    assert_array_equal(y_ticks, expected_display_labels_str)

    image_data = disp.im_.get_array().data
    assert_allclose(image_data, cm)

    if include_values:
        assert disp.text_.shape == (n_classes, n_classes)
        fmt = ".2g"
        expected_text = np.array([format(v, fmt) for v in cm.ravel(order="C")])
        text_text = np.array([t.get_text() for t in disp.text_.ravel(order="C")])
        assert_array_equal(expected_text, text_text)
    else:
        assert disp.text_ is None


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_confusion_matrix_display(pyplot, constructor_name):
    """Check the behaviour of the default constructor without using the class
    methods."""
    n_classes = 5
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=n_classes, random_state=0
    )
    classifier = SVC().fit(X, y)
    y_pred = classifier.predict(X)

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    cm = confusion_matrix(y, y_pred)
    common_kwargs = {
        "normalize": None,
        "include_values": True,
        "cmap": "viridis",
        "xticks_rotation": 45.0,
    }
    if constructor_name == "from_estimator":
        disp = ConfusionMatrixDisplay.from_estimator(classifier, X, y, **common_kwargs)
    else:
        disp = ConfusionMatrixDisplay.from_predictions(y, y_pred, **common_kwargs)

    assert_allclose(disp.confusion_matrix, cm)
    assert disp.text_.shape == (n_classes, n_classes)

    rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()]
    assert_allclose(rotations, 45.0)

    image_data = disp.im_.get_array().data
    assert_allclose(image_data, cm)

    disp.plot(cmap="plasma")
    assert disp.im_.get_cmap().name == "plasma"

    disp.plot(include_values=False)
    assert disp.text_ is None

    disp.plot(xticks_rotation=90.0)
    rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()]
    assert_allclose(rotations, 90.0)

    disp.plot(values_format="e")
    expected_text = np.array([format(v, "e") for v in cm.ravel(order="C")])
    text_text = np.array([t.get_text() for t in disp.text_.ravel(order="C")])
    assert_array_equal(expected_text, text_text)


def test_confusion_matrix_contrast(pyplot):
    """Check that the text color is appropriate depending on background."""

    cm = np.eye(2) / 2
    disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1])

    disp.plot(cmap=pyplot.cm.gray)
    # diagonal text is black
    assert_allclose(disp.text_[0, 0].get_color(), [0.0, 0.0, 0.0, 1.0])
    assert_allclose(disp.text_[1, 1].get_color(), [0.0, 0.0, 0.0, 1.0])

    # off-diagonal text is white
    assert_allclose(disp.text_[0, 1].get_color(), [1.0, 1.0, 1.0, 1.0])
    assert_allclose(disp.text_[1, 0].get_color(), [1.0, 1.0, 1.0, 1.0])

    disp.plot(cmap=pyplot.cm.gray_r)
    # diagonal text is white
    assert_allclose(disp.text_[0, 1].get_color(), [0.0, 0.0, 0.0, 1.0])
    assert_allclose(disp.text_[1, 0].get_color(), [0.0, 0.0, 0.0, 1.0])

    # off-diagonal text is black
    assert_allclose(disp.text_[0, 0].get_color(), [1.0, 1.0, 1.0, 1.0])
    assert_allclose(disp.text_[1, 1].get_color(), [1.0, 1.0, 1.0, 1.0])

    # Regression test for #15920
    cm = np.array([[19, 34], [32, 58]])
    disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1])

    disp.plot(cmap=pyplot.cm.Blues)
    min_color = pyplot.cm.Blues(0)
    max_color = pyplot.cm.Blues(255)
    assert_allclose(disp.text_[0, 0].get_color(), max_color)
    assert_allclose(disp.text_[0, 1].get_color(), max_color)
    assert_allclose(disp.text_[1, 0].get_color(), max_color)
    assert_allclose(disp.text_[1, 1].get_color(), min_color)


@pytest.mark.parametrize(
    "clf",
    [
        LogisticRegression(),
        make_pipeline(StandardScaler(), LogisticRegression()),
        make_pipeline(
            make_column_transformer((StandardScaler(), [0, 1])),
            LogisticRegression(),
        ),
    ],
    ids=["clf", "pipeline-clf", "pipeline-column_transformer-clf"],
)
def test_confusion_matrix_pipeline(pyplot, clf):
    """Check the behaviour of the plotting with more complex pipeline."""
    n_classes = 5
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=n_classes, random_state=0
    )
    with pytest.raises(NotFittedError):
        ConfusionMatrixDisplay.from_estimator(clf, X, y)
    clf.fit(X, y)
    y_pred = clf.predict(X)

    disp = ConfusionMatrixDisplay.from_estimator(clf, X, y)
    cm = confusion_matrix(y, y_pred)

    assert_allclose(disp.confusion_matrix, cm)
    assert disp.text_.shape == (n_classes, n_classes)


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_confusion_matrix_with_unknown_labels(pyplot, constructor_name):
    """Check that when labels=None, the unique values in `y_pred` and `y_true`
    will be used.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/pull/18405
    """
    n_classes = 5
    X, y = make_classification(
        n_samples=100, n_informative=5, n_classes=n_classes, random_state=0
    )
    classifier = SVC().fit(X, y)
    y_pred = classifier.predict(X)
    # create unseen labels in `y_true` not seen during fitting and not present
    # in 'classifier.classes_'
    y = y + 1

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    common_kwargs = {"labels": None}
    if constructor_name == "from_estimator":
        disp = ConfusionMatrixDisplay.from_estimator(classifier, X, y, **common_kwargs)
    else:
        disp = ConfusionMatrixDisplay.from_predictions(y, y_pred, **common_kwargs)

    display_labels = [tick.get_text() for tick in disp.ax_.get_xticklabels()]
    expected_labels = [str(i) for i in range(n_classes + 1)]
    assert_array_equal(expected_labels, display_labels)


def test_colormap_max(pyplot):
    """Check that the max color is used for the color of the text."""
    gray = pyplot.get_cmap("gray", 1024)
    confusion_matrix = np.array([[1.0, 0.0], [0.0, 1.0]])

    disp = ConfusionMatrixDisplay(confusion_matrix)
    disp.plot(cmap=gray)

    color = disp.text_[1, 0].get_color()
    assert_allclose(color, [1.0, 1.0, 1.0, 1.0])


def test_im_kw_adjust_vmin_vmax(pyplot):
    """Check that im_kw passes kwargs to imshow"""

    confusion_matrix = np.array([[0.48, 0.04], [0.08, 0.4]])
    disp = ConfusionMatrixDisplay(confusion_matrix)
    disp.plot(im_kw=dict(vmin=0.0, vmax=0.8))

    clim = disp.im_.get_clim()
    assert clim[0] == pytest.approx(0.0)
    assert clim[1] == pytest.approx(0.8)


def test_confusion_matrix_text_kw(pyplot):
    """Check that text_kw is passed to the text call."""
    font_size = 15.0
    X, y = make_classification(random_state=0)
    classifier = SVC().fit(X, y)

    # from_estimator passes the font size
    disp = ConfusionMatrixDisplay.from_estimator(
        classifier, X, y, text_kw={"fontsize": font_size}
    )
    for text in disp.text_.reshape(-1):
        assert text.get_fontsize() == font_size

    # plot adjusts plot to new font size
    new_font_size = 20.0
    disp.plot(text_kw={"fontsize": new_font_size})
    for text in disp.text_.reshape(-1):
        assert text.get_fontsize() == new_font_size

    # from_predictions passes the font size
    y_pred = classifier.predict(X)
    disp = ConfusionMatrixDisplay.from_predictions(
        y, y_pred, text_kw={"fontsize": font_size}
    )
    for text in disp.text_.reshape(-1):
        assert text.get_fontsize() == font_size