File: test_precision_recall_display.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (382 lines) | stat: -rw-r--r-- 13,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from collections import Counter

import numpy as np
import pytest
from scipy.integrate import trapezoid

from sklearn.compose import make_column_transformer
from sklearn.datasets import load_breast_cancer, make_classification
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
    PrecisionRecallDisplay,
    average_precision_score,
    precision_recall_curve,
)
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize("drop_intermediate", [True, False])
def test_precision_recall_display_plotting(
    pyplot, constructor_name, response_method, drop_intermediate
):
    """Check the overall plotting rendering."""
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    pos_label = 1

    classifier = LogisticRegression().fit(X, y)
    classifier.fit(X, y)

    y_pred = getattr(classifier, response_method)(X)
    y_pred = y_pred if y_pred.ndim == 1 else y_pred[:, pos_label]

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(
            classifier,
            X,
            y,
            response_method=response_method,
            drop_intermediate=drop_intermediate,
        )
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y, y_pred, pos_label=pos_label, drop_intermediate=drop_intermediate
        )

    precision, recall, _ = precision_recall_curve(
        y, y_pred, pos_label=pos_label, drop_intermediate=drop_intermediate
    )
    average_precision = average_precision_score(y, y_pred, pos_label=pos_label)

    np.testing.assert_allclose(display.precision, precision)
    np.testing.assert_allclose(display.recall, recall)
    assert display.average_precision == pytest.approx(average_precision)

    import matplotlib as mpl

    assert isinstance(display.line_, mpl.lines.Line2D)
    assert isinstance(display.ax_, mpl.axes.Axes)
    assert isinstance(display.figure_, mpl.figure.Figure)

    assert display.ax_.get_xlabel() == "Recall (Positive label: 1)"
    assert display.ax_.get_ylabel() == "Precision (Positive label: 1)"
    assert display.ax_.get_adjustable() == "box"
    assert display.ax_.get_aspect() in ("equal", 1.0)
    assert display.ax_.get_xlim() == display.ax_.get_ylim() == (-0.01, 1.01)

    # plotting passing some new parameters
    display.plot(alpha=0.8, name="MySpecialEstimator")
    expected_label = f"MySpecialEstimator (AP = {average_precision:0.2f})"
    assert display.line_.get_label() == expected_label
    assert display.line_.get_alpha() == pytest.approx(0.8)

    # Check that the chance level line is not plotted by default
    assert display.chance_level_ is None


@pytest.mark.parametrize("chance_level_kw", [None, {"color": "r"}, {"c": "r"}])
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_precision_recall_chance_level_line(
    pyplot,
    chance_level_kw,
    constructor_name,
):
    """Check the chance level line plotting behavior."""
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    pos_prevalence = Counter(y)[1] / len(y)

    lr = LogisticRegression()
    y_pred = lr.fit(X, y).predict_proba(X)[:, 1]

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(
            lr,
            X,
            y,
            plot_chance_level=True,
            chance_level_kw=chance_level_kw,
        )
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y,
            y_pred,
            plot_chance_level=True,
            chance_level_kw=chance_level_kw,
        )

    import matplotlib as mpl

    assert isinstance(display.chance_level_, mpl.lines.Line2D)
    assert tuple(display.chance_level_.get_xdata()) == (0, 1)
    assert tuple(display.chance_level_.get_ydata()) == (pos_prevalence, pos_prevalence)

    # Checking for chance level line styles
    if chance_level_kw is None:
        assert display.chance_level_.get_color() == "k"
    else:
        assert display.chance_level_.get_color() == "r"


@pytest.mark.parametrize(
    "constructor_name, default_label",
    [
        ("from_estimator", "LogisticRegression (AP = {:.2f})"),
        ("from_predictions", "Classifier (AP = {:.2f})"),
    ],
)
def test_precision_recall_display_name(pyplot, constructor_name, default_label):
    """Check the behaviour of the name parameters"""
    X, y = make_classification(n_classes=2, n_samples=100, random_state=0)
    pos_label = 1

    classifier = LogisticRegression().fit(X, y)
    classifier.fit(X, y)

    y_pred = classifier.predict_proba(X)[:, pos_label]

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(classifier, X, y)
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y, y_pred, pos_label=pos_label
        )

    average_precision = average_precision_score(y, y_pred, pos_label=pos_label)

    # check that the default name is used
    assert display.line_.get_label() == default_label.format(average_precision)

    # check that the name can be set
    display.plot(name="MySpecialEstimator")
    assert (
        display.line_.get_label()
        == f"MySpecialEstimator (AP = {average_precision:.2f})"
    )


@pytest.mark.parametrize(
    "clf",
    [
        make_pipeline(StandardScaler(), LogisticRegression()),
        make_pipeline(
            make_column_transformer((StandardScaler(), [0, 1])), LogisticRegression()
        ),
    ],
)
def test_precision_recall_display_pipeline(pyplot, clf):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    with pytest.raises(NotFittedError):
        PrecisionRecallDisplay.from_estimator(clf, X, y)
    clf.fit(X, y)
    display = PrecisionRecallDisplay.from_estimator(clf, X, y)
    assert display.estimator_name == clf.__class__.__name__


def test_precision_recall_display_string_labels(pyplot):
    # regression test #15738
    cancer = load_breast_cancer()
    X, y = cancer.data, cancer.target_names[cancer.target]

    lr = make_pipeline(StandardScaler(), LogisticRegression())
    lr.fit(X, y)
    for klass in cancer.target_names:
        assert klass in lr.classes_
    display = PrecisionRecallDisplay.from_estimator(lr, X, y)

    y_pred = lr.predict_proba(X)[:, 1]
    avg_prec = average_precision_score(y, y_pred, pos_label=lr.classes_[1])

    assert display.average_precision == pytest.approx(avg_prec)
    assert display.estimator_name == lr.__class__.__name__

    err_msg = r"y_true takes value in {'benign', 'malignant'}"
    with pytest.raises(ValueError, match=err_msg):
        PrecisionRecallDisplay.from_predictions(y, y_pred)

    display = PrecisionRecallDisplay.from_predictions(
        y, y_pred, pos_label=lr.classes_[1]
    )
    assert display.average_precision == pytest.approx(avg_prec)


@pytest.mark.parametrize(
    "average_precision, estimator_name, expected_label",
    [
        (0.9, None, "AP = 0.90"),
        (None, "my_est", "my_est"),
        (0.8, "my_est2", "my_est2 (AP = 0.80)"),
    ],
)
def test_default_labels(pyplot, average_precision, estimator_name, expected_label):
    """Check the default labels used in the display."""
    precision = np.array([1, 0.5, 0])
    recall = np.array([0, 0.5, 1])
    display = PrecisionRecallDisplay(
        precision,
        recall,
        average_precision=average_precision,
        estimator_name=estimator_name,
    )
    display.plot()
    assert display.line_.get_label() == expected_label


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
def test_plot_precision_recall_pos_label(pyplot, constructor_name, response_method):
    # check that we can provide the positive label and display the proper
    # statistics
    X, y = load_breast_cancer(return_X_y=True)
    # create an highly imbalanced version of the breast cancer dataset
    idx_positive = np.flatnonzero(y == 1)
    idx_negative = np.flatnonzero(y == 0)
    idx_selected = np.hstack([idx_negative, idx_positive[:25]])
    X, y = X[idx_selected], y[idx_selected]
    X, y = shuffle(X, y, random_state=42)
    # only use 2 features to make the problem even harder
    X = X[:, :2]
    y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object)
    X_train, X_test, y_train, y_test = train_test_split(
        X,
        y,
        stratify=y,
        random_state=0,
    )

    classifier = LogisticRegression()
    classifier.fit(X_train, y_train)

    # sanity check to be sure the positive class is classes_[0] and that we
    # are betrayed by the class imbalance
    assert classifier.classes_.tolist() == ["cancer", "not cancer"]

    y_pred = getattr(classifier, response_method)(X_test)
    # we select the corresponding probability columns or reverse the decision
    #  function otherwise
    y_pred_cancer = -1 * y_pred if y_pred.ndim == 1 else y_pred[:, 0]
    y_pred_not_cancer = y_pred if y_pred.ndim == 1 else y_pred[:, 1]

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(
            classifier,
            X_test,
            y_test,
            pos_label="cancer",
            response_method=response_method,
        )
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y_test,
            y_pred_cancer,
            pos_label="cancer",
        )
    # we should obtain the statistics of the "cancer" class
    avg_prec_limit = 0.65
    assert display.average_precision < avg_prec_limit
    assert -trapezoid(display.precision, display.recall) < avg_prec_limit

    # otherwise we should obtain the statistics of the "not cancer" class
    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(
            classifier,
            X_test,
            y_test,
            response_method=response_method,
            pos_label="not cancer",
        )
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y_test,
            y_pred_not_cancer,
            pos_label="not cancer",
        )
    avg_prec_limit = 0.95
    assert display.average_precision > avg_prec_limit
    assert -trapezoid(display.precision, display.recall) > avg_prec_limit


@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_precision_recall_prevalence_pos_label_reusable(pyplot, constructor_name):
    # Check that even if one passes plot_chance_level=False the first time
    # one can still call disp.plot with plot_chance_level=True and get the
    # chance level line
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    lr = LogisticRegression()
    y_pred = lr.fit(X, y).predict_proba(X)[:, 1]

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(
            lr, X, y, plot_chance_level=False
        )
    else:
        display = PrecisionRecallDisplay.from_predictions(
            y, y_pred, plot_chance_level=False
        )
    assert display.chance_level_ is None

    import matplotlib as mpl

    # When calling from_estimator or from_predictions,
    # prevalence_pos_label should have been set, so that directly
    # calling plot_chance_level=True should plot the chance level line
    display.plot(plot_chance_level=True)
    assert isinstance(display.chance_level_, mpl.lines.Line2D)


def test_precision_recall_raise_no_prevalence(pyplot):
    # Check that raises correctly when plotting chance level with
    # no prvelance_pos_label is provided
    precision = np.array([1, 0.5, 0])
    recall = np.array([0, 0.5, 1])
    display = PrecisionRecallDisplay(precision, recall)

    msg = (
        "You must provide prevalence_pos_label when constructing the "
        "PrecisionRecallDisplay object in order to plot the chance "
        "level line. Alternatively, you may use "
        "PrecisionRecallDisplay.from_estimator or "
        "PrecisionRecallDisplay.from_predictions "
        "to automatically set prevalence_pos_label"
    )

    with pytest.raises(ValueError, match=msg):
        display.plot(plot_chance_level=True)


@pytest.mark.parametrize("despine", [True, False])
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_plot_precision_recall_despine(pyplot, despine, constructor_name):
    # Check that the despine keyword is working correctly
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    clf = LogisticRegression().fit(X, y)
    clf.fit(X, y)

    y_pred = clf.decision_function(X)

    # safe guard for the binary if/else construction
    assert constructor_name in ("from_estimator", "from_predictions")

    if constructor_name == "from_estimator":
        display = PrecisionRecallDisplay.from_estimator(clf, X, y, despine=despine)
    else:
        display = PrecisionRecallDisplay.from_predictions(y, y_pred, despine=despine)

    for s in ["top", "right"]:
        assert display.ax_.spines[s].get_visible() is not despine

    if despine:
        for s in ["bottom", "left"]:
            assert display.ax_.spines[s].get_bounds() == (0, 1)