1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
from collections.abc import Mapping
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.integrate import trapezoid
from sklearn import clone
from sklearn.compose import make_column_transformer
from sklearn.datasets import load_breast_cancer, make_classification
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import RocCurveDisplay, auc, roc_curve
from sklearn.model_selection import cross_validate, train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils import _safe_indexing, shuffle
from sklearn.utils._response import _get_response_values_binary
@pytest.fixture(scope="module")
def data_binary():
X, y = make_classification(
n_samples=200,
n_features=20,
n_informative=5,
n_redundant=2,
flip_y=0.1,
class_sep=0.8,
random_state=42,
)
return X, y
def _check_figure_axes_and_labels(display, pos_label):
"""Check mpl axes and figure defaults are correct."""
import matplotlib as mpl
assert isinstance(display.ax_, mpl.axes.Axes)
assert isinstance(display.figure_, mpl.figure.Figure)
assert display.ax_.get_adjustable() == "box"
assert display.ax_.get_aspect() in ("equal", 1.0)
assert display.ax_.get_xlim() == display.ax_.get_ylim() == (-0.01, 1.01)
expected_pos_label = 1 if pos_label is None else pos_label
expected_ylabel = f"True Positive Rate (Positive label: {expected_pos_label})"
expected_xlabel = f"False Positive Rate (Positive label: {expected_pos_label})"
assert display.ax_.get_ylabel() == expected_ylabel
assert display.ax_.get_xlabel() == expected_xlabel
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("drop_intermediate", [True, False])
@pytest.mark.parametrize("with_strings", [True, False])
@pytest.mark.parametrize(
"constructor_name, default_name",
[
("from_estimator", "LogisticRegression"),
("from_predictions", "Classifier"),
],
)
def test_roc_curve_display_plotting(
pyplot,
response_method,
data_binary,
with_sample_weight,
drop_intermediate,
with_strings,
constructor_name,
default_name,
):
"""Check the overall plotting behaviour for single curve."""
X, y = data_binary
pos_label = None
if with_strings:
y = np.array(["c", "b"])[y]
pos_label = "c"
if with_sample_weight:
rng = np.random.RandomState(42)
sample_weight = rng.randint(1, 4, size=(X.shape[0]))
else:
sample_weight = None
lr = LogisticRegression()
lr.fit(X, y)
y_score = getattr(lr, response_method)(X)
y_score = y_score if y_score.ndim == 1 else y_score[:, 1]
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
lr,
X,
y,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
curve_kwargs={"alpha": 0.8},
)
else:
display = RocCurveDisplay.from_predictions(
y,
y_score,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
curve_kwargs={"alpha": 0.8},
)
fpr, tpr, _ = roc_curve(
y,
y_score,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
)
assert_allclose(display.roc_auc, auc(fpr, tpr))
assert_allclose(display.fpr, fpr)
assert_allclose(display.tpr, tpr)
assert display.name == default_name
import matplotlib as mpl
_check_figure_axes_and_labels(display, pos_label)
assert isinstance(display.line_, mpl.lines.Line2D)
assert display.line_.get_alpha() == 0.8
expected_label = f"{default_name} (AUC = {display.roc_auc:.2f})"
assert display.line_.get_label() == expected_label
@pytest.mark.parametrize(
"params, err_msg",
[
(
{
"fpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"tpr": [np.array([0, 0.5, 1])],
"roc_auc": None,
"name": None,
},
"self.fpr and self.tpr from `RocCurveDisplay` initialization,",
),
(
{
"fpr": [np.array([0, 0.5, 1])],
"tpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"roc_auc": [0.8, 0.9],
"name": None,
},
"self.fpr, self.tpr and self.roc_auc from `RocCurveDisplay`",
),
(
{
"fpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"tpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"roc_auc": [0.8],
"name": None,
},
"Got: self.fpr: 2, self.tpr: 2, self.roc_auc: 1",
),
(
{
"fpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"tpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"roc_auc": [0.8, 0.9],
"name": ["curve1", "curve2", "curve3"],
},
r"self.fpr, self.tpr, self.roc_auc and 'name' \(or self.name\)",
),
(
{
"fpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"tpr": [np.array([0, 0.5, 1]), np.array([0, 0.5, 1])],
"roc_auc": [0.8, 0.9],
# List of length 1 is always allowed
"name": ["curve1"],
},
None,
),
],
)
def test_roc_curve_plot_parameter_length_validation(pyplot, params, err_msg):
"""Check `plot` parameter length validation performed correctly."""
display = RocCurveDisplay(**params)
if err_msg:
with pytest.raises(ValueError, match=err_msg):
display.plot()
else:
# No error should be raised
display.plot()
def test_validate_plot_params(pyplot):
"""Check `_validate_plot_params` returns the correct variables."""
fpr = np.array([0, 0.5, 1])
tpr = [np.array([0, 0.5, 1])]
roc_auc = None
name = "test_curve"
# Initialize display with test inputs
display = RocCurveDisplay(
fpr=fpr,
tpr=tpr,
roc_auc=roc_auc,
name=name,
pos_label=None,
)
fpr_out, tpr_out, roc_auc_out, name_out = display._validate_plot_params(
ax=None, name=None
)
assert isinstance(fpr_out, list)
assert isinstance(tpr_out, list)
assert len(fpr_out) == 1
assert len(tpr_out) == 1
assert roc_auc_out is None
assert name_out == ["test_curve"]
def test_roc_curve_from_cv_results_param_validation(pyplot, data_binary):
"""Check parameter validation is correct."""
X, y = data_binary
# `cv_results` missing key
cv_results_no_est = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=False
)
cv_results_no_indices = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=False
)
for cv_results in (cv_results_no_est, cv_results_no_indices):
with pytest.raises(
ValueError,
match="`cv_results` does not contain one of the following required",
):
RocCurveDisplay.from_cv_results(cv_results, X, y)
cv_results = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=True
)
# `X` wrong length
with pytest.raises(ValueError, match="`X` does not contain the correct"):
RocCurveDisplay.from_cv_results(cv_results, X[:10, :], y)
# `y` not binary
y_multi = y.copy()
y_multi[0] = 2
with pytest.raises(ValueError, match="The target `y` is not binary."):
RocCurveDisplay.from_cv_results(cv_results, X, y_multi)
# input inconsistent length
with pytest.raises(ValueError, match="Found input variables with inconsistent"):
RocCurveDisplay.from_cv_results(cv_results, X, y[:10])
with pytest.raises(ValueError, match="Found input variables with inconsistent"):
RocCurveDisplay.from_cv_results(cv_results, X, y, sample_weight=[1, 2])
# `pos_label` inconsistency
y_multi[y_multi == 1] = 2
with pytest.raises(ValueError, match=r"y takes value in \{0, 2\}"):
RocCurveDisplay.from_cv_results(cv_results, X, y_multi)
# `name` is list while `curve_kwargs` is None or dict
for curve_kwargs in (None, {"alpha": 0.2}):
with pytest.raises(ValueError, match="To avoid labeling individual curves"):
RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
name=["one", "two", "three"],
curve_kwargs=curve_kwargs,
)
# `curve_kwargs` incorrect length
with pytest.raises(ValueError, match="`curve_kwargs` must be None, a dictionary"):
RocCurveDisplay.from_cv_results(cv_results, X, y, curve_kwargs=[{"alpha": 1}])
# `curve_kwargs` both alias provided
with pytest.raises(TypeError, match="Got both c and"):
RocCurveDisplay.from_cv_results(
cv_results, X, y, curve_kwargs={"c": "blue", "color": "red"}
)
@pytest.mark.parametrize(
"curve_kwargs",
[None, {"alpha": 0.2}, [{"alpha": 0.2}, {"alpha": 0.3}, {"alpha": 0.4}]],
)
def test_roc_curve_display_from_cv_results_curve_kwargs(
pyplot, data_binary, curve_kwargs
):
"""Check `curve_kwargs` correctly passed."""
X, y = data_binary
n_cv = 3
cv_results = cross_validate(
LogisticRegression(), X, y, cv=n_cv, return_estimator=True, return_indices=True
)
display = RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
curve_kwargs=curve_kwargs,
)
if curve_kwargs is None:
# Default `alpha` used
assert all(line.get_alpha() == 0.5 for line in display.line_)
elif isinstance(curve_kwargs, Mapping):
# `alpha` from dict used for all curves
assert all(line.get_alpha() == 0.2 for line in display.line_)
else:
# Different `alpha` used for each curve
assert all(
line.get_alpha() == curve_kwargs[i]["alpha"]
for i, line in enumerate(display.line_)
)
# TODO(1.9): Remove in 1.9
def test_roc_curve_display_estimator_name_deprecation(pyplot):
"""Check deprecation of `estimator_name`."""
fpr = np.array([0, 0.5, 1])
tpr = np.array([0, 0.5, 1])
with pytest.warns(FutureWarning, match="`estimator_name` is deprecated in"):
RocCurveDisplay(fpr=fpr, tpr=tpr, estimator_name="test")
# TODO(1.9): Remove in 1.9
@pytest.mark.parametrize(
"constructor_name", ["from_estimator", "from_predictions", "plot"]
)
def test_roc_curve_display_kwargs_deprecation(pyplot, data_binary, constructor_name):
"""Check **kwargs deprecated correctly in favour of `curve_kwargs`."""
X, y = data_binary
lr = LogisticRegression()
lr.fit(X, y)
fpr = np.array([0, 0.5, 1])
tpr = np.array([0, 0.5, 1])
# Error when both `curve_kwargs` and `**kwargs` provided
with pytest.raises(ValueError, match="Cannot provide both `curve_kwargs`"):
if constructor_name == "from_estimator":
RocCurveDisplay.from_estimator(
lr, X, y, curve_kwargs={"alpha": 1}, label="test"
)
elif constructor_name == "from_predictions":
RocCurveDisplay.from_predictions(
y, y, curve_kwargs={"alpha": 1}, label="test"
)
else:
RocCurveDisplay(fpr=fpr, tpr=tpr).plot(
curve_kwargs={"alpha": 1}, label="test"
)
# Warning when `**kwargs`` provided
with pytest.warns(FutureWarning, match=r"`\*\*kwargs` is deprecated and will be"):
if constructor_name == "from_estimator":
RocCurveDisplay.from_estimator(lr, X, y, label="test")
elif constructor_name == "from_predictions":
RocCurveDisplay.from_predictions(y, y, label="test")
else:
RocCurveDisplay(fpr=fpr, tpr=tpr).plot(label="test")
@pytest.mark.parametrize(
"curve_kwargs",
[
None,
{"color": "blue"},
[{"color": "blue"}, {"color": "green"}, {"color": "red"}],
],
)
@pytest.mark.parametrize("drop_intermediate", [True, False])
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("with_strings", [True, False])
def test_roc_curve_display_plotting_from_cv_results(
pyplot,
data_binary,
with_strings,
with_sample_weight,
response_method,
drop_intermediate,
curve_kwargs,
):
"""Check overall plotting of `from_cv_results`."""
X, y = data_binary
pos_label = None
if with_strings:
y = np.array(["c", "b"])[y]
pos_label = "c"
if with_sample_weight:
rng = np.random.RandomState(42)
sample_weight = rng.randint(1, 4, size=(X.shape[0]))
else:
sample_weight = None
cv_results = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=True
)
display = RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
response_method=response_method,
pos_label=pos_label,
curve_kwargs=curve_kwargs,
)
for idx, (estimator, test_indices) in enumerate(
zip(cv_results["estimator"], cv_results["indices"]["test"])
):
y_true = _safe_indexing(y, test_indices)
y_pred = _get_response_values_binary(
estimator,
_safe_indexing(X, test_indices),
response_method=response_method,
pos_label=pos_label,
)[0]
sample_weight_fold = (
None
if sample_weight is None
else _safe_indexing(sample_weight, test_indices)
)
fpr, tpr, _ = roc_curve(
y_true,
y_pred,
sample_weight=sample_weight_fold,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
)
assert_allclose(display.roc_auc[idx], auc(fpr, tpr))
assert_allclose(display.fpr[idx], fpr)
assert_allclose(display.tpr[idx], tpr)
assert display.name is None
import matplotlib as mpl
_check_figure_axes_and_labels(display, pos_label)
if with_sample_weight:
aggregate_expected_labels = ["AUC = 0.64 +/- 0.04", "_child1", "_child2"]
else:
aggregate_expected_labels = ["AUC = 0.61 +/- 0.05", "_child1", "_child2"]
for idx, line in enumerate(display.line_):
assert isinstance(line, mpl.lines.Line2D)
# Default alpha for `from_cv_results`
line.get_alpha() == 0.5
if isinstance(curve_kwargs, list):
# Each individual curve labelled
assert line.get_label() == f"AUC = {display.roc_auc[idx]:.2f}"
else:
# Single aggregate label
assert line.get_label() == aggregate_expected_labels[idx]
@pytest.mark.parametrize("roc_auc", [[1.0, 1.0, 1.0], None])
@pytest.mark.parametrize(
"curve_kwargs",
[None, {"color": "red"}, [{"c": "red"}, {"c": "green"}, {"c": "yellow"}]],
)
@pytest.mark.parametrize("name", [None, "single", ["one", "two", "three"]])
def test_roc_curve_plot_legend_label(pyplot, data_binary, name, curve_kwargs, roc_auc):
"""Check legend label correct with all `curve_kwargs`, `name` combinations."""
fpr = [np.array([0, 0.5, 1]), np.array([0, 0.5, 1]), np.array([0, 0.5, 1])]
tpr = [np.array([0, 0.5, 1]), np.array([0, 0.5, 1]), np.array([0, 0.5, 1])]
if not isinstance(curve_kwargs, list) and isinstance(name, list):
with pytest.raises(ValueError, match="To avoid labeling individual curves"):
RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc).plot(
name=name, curve_kwargs=curve_kwargs
)
else:
display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc).plot(
name=name, curve_kwargs=curve_kwargs
)
legend = display.ax_.get_legend()
if legend is None:
# No legend is created, exit test early
assert name is None
assert roc_auc is None
return
else:
legend_labels = [text.get_text() for text in legend.get_texts()]
if isinstance(curve_kwargs, list):
# Multiple labels in legend
assert len(legend_labels) == 3
for idx, label in enumerate(legend_labels):
if name is None:
expected_label = "AUC = 1.00" if roc_auc else None
assert label == expected_label
elif isinstance(name, str):
expected_label = "single (AUC = 1.00)" if roc_auc else "single"
assert label == expected_label
else:
# `name` is a list of different strings
expected_label = (
f"{name[idx]} (AUC = 1.00)" if roc_auc else f"{name[idx]}"
)
assert label == expected_label
else:
# Single label in legend
assert len(legend_labels) == 1
if name is None:
expected_label = "AUC = 1.00 +/- 0.00" if roc_auc else None
assert legend_labels[0] == expected_label
else:
# name is single string
expected_label = "single (AUC = 1.00 +/- 0.00)" if roc_auc else "single"
assert legend_labels[0] == expected_label
@pytest.mark.parametrize(
"curve_kwargs",
[None, {"color": "red"}, [{"c": "red"}, {"c": "green"}, {"c": "yellow"}]],
)
@pytest.mark.parametrize("name", [None, "single", ["one", "two", "three"]])
def test_roc_curve_from_cv_results_legend_label(
pyplot, data_binary, name, curve_kwargs
):
"""Check legend label correct with all `curve_kwargs`, `name` combinations."""
X, y = data_binary
n_cv = 3
cv_results = cross_validate(
LogisticRegression(), X, y, cv=n_cv, return_estimator=True, return_indices=True
)
if not isinstance(curve_kwargs, list) and isinstance(name, list):
with pytest.raises(ValueError, match="To avoid labeling individual curves"):
RocCurveDisplay.from_cv_results(
cv_results, X, y, name=name, curve_kwargs=curve_kwargs
)
else:
display = RocCurveDisplay.from_cv_results(
cv_results, X, y, name=name, curve_kwargs=curve_kwargs
)
legend = display.ax_.get_legend()
legend_labels = [text.get_text() for text in legend.get_texts()]
if isinstance(curve_kwargs, list):
# Multiple labels in legend
assert len(legend_labels) == 3
auc = ["0.62", "0.66", "0.55"]
for idx, label in enumerate(legend_labels):
if name is None:
assert label == f"AUC = {auc[idx]}"
elif isinstance(name, str):
assert label == f"single (AUC = {auc[idx]})"
else:
# `name` is a list of different strings
assert label == f"{name[idx]} (AUC = {auc[idx]})"
else:
# Single label in legend
assert len(legend_labels) == 1
if name is None:
assert legend_labels[0] == "AUC = 0.61 +/- 0.05"
else:
# name is single string
assert legend_labels[0] == "single (AUC = 0.61 +/- 0.05)"
@pytest.mark.parametrize(
"curve_kwargs",
[None, {"color": "red"}, [{"c": "red"}, {"c": "green"}, {"c": "yellow"}]],
)
def test_roc_curve_from_cv_results_curve_kwargs(pyplot, data_binary, curve_kwargs):
"""Check line kwargs passed correctly in `from_cv_results`."""
X, y = data_binary
cv_results = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=True
)
display = RocCurveDisplay.from_cv_results(
cv_results, X, y, curve_kwargs=curve_kwargs
)
for idx, line in enumerate(display.line_):
color = line.get_color()
if curve_kwargs is None:
# Default color
assert color == "blue"
elif isinstance(curve_kwargs, Mapping):
# All curves "red"
assert color == "red"
else:
assert color == curve_kwargs[idx]["c"]
def _check_chance_level(plot_chance_level, chance_level_kw, display):
"""Check chance level line and line styles correct."""
import matplotlib as mpl
if plot_chance_level:
assert isinstance(display.chance_level_, mpl.lines.Line2D)
assert tuple(display.chance_level_.get_xdata()) == (0, 1)
assert tuple(display.chance_level_.get_ydata()) == (0, 1)
else:
assert display.chance_level_ is None
# Checking for chance level line styles
if plot_chance_level and chance_level_kw is None:
assert display.chance_level_.get_color() == "k"
assert display.chance_level_.get_linestyle() == "--"
assert display.chance_level_.get_label() == "Chance level (AUC = 0.5)"
elif plot_chance_level:
if "c" in chance_level_kw:
assert display.chance_level_.get_color() == chance_level_kw["c"]
else:
assert display.chance_level_.get_color() == chance_level_kw["color"]
if "lw" in chance_level_kw:
assert display.chance_level_.get_linewidth() == chance_level_kw["lw"]
else:
assert display.chance_level_.get_linewidth() == chance_level_kw["linewidth"]
if "ls" in chance_level_kw:
assert display.chance_level_.get_linestyle() == chance_level_kw["ls"]
else:
assert display.chance_level_.get_linestyle() == chance_level_kw["linestyle"]
@pytest.mark.parametrize("plot_chance_level", [True, False])
@pytest.mark.parametrize("label", [None, "Test Label"])
@pytest.mark.parametrize(
"chance_level_kw",
[
None,
{"linewidth": 1, "color": "red", "linestyle": "-", "label": "DummyEstimator"},
{"lw": 1, "c": "red", "ls": "-", "label": "DummyEstimator"},
{"lw": 1, "color": "blue", "ls": "-", "label": None},
],
)
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_roc_curve_chance_level_line(
pyplot,
data_binary,
plot_chance_level,
chance_level_kw,
label,
constructor_name,
):
"""Check chance level plotting behavior of `from_predictions`, `from_estimator`."""
X, y = data_binary
lr = LogisticRegression()
lr.fit(X, y)
y_score = getattr(lr, "predict_proba")(X)
y_score = y_score if y_score.ndim == 1 else y_score[:, 1]
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
lr,
X,
y,
curve_kwargs={"alpha": 0.8, "label": label},
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
)
else:
display = RocCurveDisplay.from_predictions(
y,
y_score,
curve_kwargs={"alpha": 0.8, "label": label},
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
)
import matplotlib as mpl
assert isinstance(display.line_, mpl.lines.Line2D)
assert display.line_.get_alpha() == 0.8
assert isinstance(display.ax_, mpl.axes.Axes)
assert isinstance(display.figure_, mpl.figure.Figure)
_check_chance_level(plot_chance_level, chance_level_kw, display)
# Checking for legend behaviour
if plot_chance_level and chance_level_kw is not None:
if label is not None or chance_level_kw.get("label") is not None:
legend = display.ax_.get_legend()
assert legend is not None # Legend should be present if any label is set
legend_labels = [text.get_text() for text in legend.get_texts()]
if label is not None:
assert label in legend_labels
if chance_level_kw.get("label") is not None:
assert chance_level_kw["label"] in legend_labels
else:
assert display.ax_.get_legend() is None
@pytest.mark.parametrize("plot_chance_level", [True, False])
@pytest.mark.parametrize(
"chance_level_kw",
[
None,
{"linewidth": 1, "color": "red", "linestyle": "-", "label": "DummyEstimator"},
{"lw": 1, "c": "red", "ls": "-", "label": "DummyEstimator"},
{"lw": 1, "color": "blue", "ls": "-", "label": None},
],
)
@pytest.mark.parametrize("curve_kwargs", [None, {"alpha": 0.8}])
def test_roc_curve_chance_level_line_from_cv_results(
pyplot,
data_binary,
plot_chance_level,
chance_level_kw,
curve_kwargs,
):
"""Check chance level plotting behavior with `from_cv_results`."""
X, y = data_binary
n_cv = 3
cv_results = cross_validate(
LogisticRegression(), X, y, cv=n_cv, return_estimator=True, return_indices=True
)
display = RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
plot_chance_level=plot_chance_level,
chance_level_kwargs=chance_level_kw,
curve_kwargs=curve_kwargs,
)
import matplotlib as mpl
assert all(isinstance(line, mpl.lines.Line2D) for line in display.line_)
# Ensure both curve line kwargs passed correctly as well
if curve_kwargs:
assert all(line.get_alpha() == 0.8 for line in display.line_)
assert isinstance(display.ax_, mpl.axes.Axes)
assert isinstance(display.figure_, mpl.figure.Figure)
_check_chance_level(plot_chance_level, chance_level_kw, display)
legend = display.ax_.get_legend()
# There is always a legend, to indicate each 'Fold' curve
assert legend is not None
legend_labels = [text.get_text() for text in legend.get_texts()]
if plot_chance_level and chance_level_kw is not None:
if chance_level_kw.get("label") is not None:
assert chance_level_kw["label"] in legend_labels
else:
assert len(legend_labels) == 1
@pytest.mark.parametrize(
"clf",
[
LogisticRegression(),
make_pipeline(StandardScaler(), LogisticRegression()),
make_pipeline(
make_column_transformer((StandardScaler(), [0, 1])), LogisticRegression()
),
],
)
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_roc_curve_display_complex_pipeline(pyplot, data_binary, clf, constructor_name):
"""Check the behaviour with complex pipeline."""
X, y = data_binary
clf = clone(clf)
if constructor_name == "from_estimator":
with pytest.raises(NotFittedError):
RocCurveDisplay.from_estimator(clf, X, y)
clf.fit(X, y)
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(clf, X, y)
name = clf.__class__.__name__
else:
display = RocCurveDisplay.from_predictions(y, y)
name = "Classifier"
assert name in display.line_.get_label()
assert display.name == name
@pytest.mark.parametrize(
"roc_auc, name, curve_kwargs, expected_labels",
[
([0.9, 0.8], None, None, ["AUC = 0.85 +/- 0.05", "_child1"]),
([0.9, 0.8], "Est name", None, ["Est name (AUC = 0.85 +/- 0.05)", "_child1"]),
(
[0.8, 0.7],
["fold1", "fold2"],
[{"c": "blue"}, {"c": "red"}],
["fold1 (AUC = 0.80)", "fold2 (AUC = 0.70)"],
),
(None, ["fold1", "fold2"], [{"c": "blue"}, {"c": "red"}], ["fold1", "fold2"]),
],
)
def test_roc_curve_display_default_labels(
pyplot, roc_auc, name, curve_kwargs, expected_labels
):
"""Check the default labels used in the display."""
fpr = [np.array([0, 0.5, 1]), np.array([0, 0.3, 1])]
tpr = [np.array([0, 0.5, 1]), np.array([0, 0.3, 1])]
disp = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, name=name).plot(
curve_kwargs=curve_kwargs
)
for idx, expected_label in enumerate(expected_labels):
assert disp.line_[idx].get_label() == expected_label
def _check_auc(display, constructor_name):
roc_auc_limit = 0.95679
roc_auc_limit_multi = [0.97007, 0.985915, 0.980952]
if constructor_name == "from_cv_results":
for idx, roc_auc in enumerate(display.roc_auc):
assert roc_auc == pytest.approx(roc_auc_limit_multi[idx])
else:
assert display.roc_auc == pytest.approx(roc_auc_limit)
assert trapezoid(display.tpr, display.fpr) == pytest.approx(roc_auc_limit)
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize(
"constructor_name", ["from_estimator", "from_predictions", "from_cv_results"]
)
def test_plot_roc_curve_pos_label(pyplot, response_method, constructor_name):
# check that we can provide the positive label and display the proper
# statistics
X, y = load_breast_cancer(return_X_y=True)
# create an highly imbalanced
idx_positive = np.flatnonzero(y == 1)
idx_negative = np.flatnonzero(y == 0)
idx_selected = np.hstack([idx_negative, idx_positive[:25]])
X, y = X[idx_selected], y[idx_selected]
X, y = shuffle(X, y, random_state=42)
# only use 2 features to make the problem even harder
X = X[:, :2]
y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
stratify=y,
random_state=0,
)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
cv_results = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=True
)
# Sanity check to be sure the positive class is `classes_[0]`
# Class imbalance ensures a large difference in prediction values between classes,
# allowing us to catch errors when we switch `pos_label`
assert classifier.classes_.tolist() == ["cancer", "not cancer"]
y_score = getattr(classifier, response_method)(X_test)
# we select the corresponding probability columns or reverse the decision
# function otherwise
y_score_cancer = -1 * y_score if y_score.ndim == 1 else y_score[:, 0]
y_score_not_cancer = y_score if y_score.ndim == 1 else y_score[:, 1]
pos_label = "cancer"
y_score = y_score_cancer
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
classifier,
X_test,
y_test,
pos_label=pos_label,
response_method=response_method,
)
elif constructor_name == "from_predictions":
display = RocCurveDisplay.from_predictions(
y_test,
y_score,
pos_label=pos_label,
)
else:
display = RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
response_method=response_method,
pos_label=pos_label,
)
_check_auc(display, constructor_name)
pos_label = "not cancer"
y_score = y_score_not_cancer
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
classifier,
X_test,
y_test,
response_method=response_method,
pos_label=pos_label,
)
elif constructor_name == "from_predictions":
display = RocCurveDisplay.from_predictions(
y_test,
y_score,
pos_label=pos_label,
)
else:
display = RocCurveDisplay.from_cv_results(
cv_results,
X,
y,
response_method=response_method,
pos_label=pos_label,
)
_check_auc(display, constructor_name)
# TODO(1.9): remove
def test_y_score_and_y_pred_specified_error():
"""Check that an error is raised when both y_score and y_pred are specified."""
y_true = np.array([0, 1, 1, 0])
y_score = np.array([0.1, 0.4, 0.35, 0.8])
y_pred = np.array([0.2, 0.3, 0.5, 0.1])
with pytest.raises(
ValueError, match="`y_pred` and `y_score` cannot be both specified"
):
RocCurveDisplay.from_predictions(y_true, y_score=y_score, y_pred=y_pred)
# TODO(1.9): remove
def test_y_pred_deprecation_warning(pyplot):
"""Check that a warning is raised when y_pred is specified."""
y_true = np.array([0, 1, 1, 0])
y_score = np.array([0.1, 0.4, 0.35, 0.8])
with pytest.warns(FutureWarning, match="y_pred is deprecated in 1.7"):
display_y_pred = RocCurveDisplay.from_predictions(y_true, y_pred=y_score)
assert_allclose(display_y_pred.fpr, [0, 0.5, 0.5, 1])
assert_allclose(display_y_pred.tpr, [0, 0, 1, 1])
display_y_score = RocCurveDisplay.from_predictions(y_true, y_score)
assert_allclose(display_y_score.fpr, [0, 0.5, 0.5, 1])
assert_allclose(display_y_score.tpr, [0, 0, 1, 1])
@pytest.mark.parametrize("despine", [True, False])
@pytest.mark.parametrize(
"constructor_name", ["from_estimator", "from_predictions", "from_cv_results"]
)
def test_plot_roc_curve_despine(pyplot, data_binary, despine, constructor_name):
# Check that the despine keyword is working correctly
X, y = data_binary
lr = LogisticRegression().fit(X, y)
lr.fit(X, y)
cv_results = cross_validate(
LogisticRegression(), X, y, cv=3, return_estimator=True, return_indices=True
)
y_pred = lr.decision_function(X)
# safe guard for the if/else construction
assert constructor_name in ("from_estimator", "from_predictions", "from_cv_results")
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(lr, X, y, despine=despine)
elif constructor_name == "from_predictions":
display = RocCurveDisplay.from_predictions(y, y_pred, despine=despine)
else:
display = RocCurveDisplay.from_cv_results(cv_results, X, y, despine=despine)
for s in ["top", "right"]:
assert display.ax_.spines[s].get_visible() is not despine
if despine:
for s in ["bottom", "left"]:
assert display.ax_.spines[s].get_bounds() == (0, 1)
|