1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from collections.abc import MutableMapping
from numbers import Integral, Real
import numpy as np
from ..base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
_fit_context,
clone,
)
from ..exceptions import NotFittedError
from ..metrics import (
check_scoring,
get_scorer_names,
)
from ..metrics._scorer import (
_CurveScorer,
_threshold_scores_to_class_labels,
)
from ..utils import _safe_indexing, get_tags
from ..utils._param_validation import HasMethods, Interval, RealNotInt, StrOptions
from ..utils._response import _get_response_values_binary
from ..utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_raise_for_params,
process_routing,
)
from ..utils.metaestimators import available_if
from ..utils.multiclass import type_of_target
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
_check_method_params,
_estimator_has,
_num_samples,
check_is_fitted,
indexable,
)
from ._split import StratifiedShuffleSplit, check_cv
def _check_is_fitted(estimator):
try:
check_is_fitted(estimator.estimator)
except NotFittedError:
check_is_fitted(estimator, "estimator_")
class BaseThresholdClassifier(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
"""Base class for binary classifiers that set a non-default decision threshold.
In this base class, we define the following interface:
- the validation of common parameters in `fit`;
- the different prediction methods that can be used with the classifier.
.. versionadded:: 1.5
Parameters
----------
estimator : estimator instance
The binary classifier, fitted or not, for which we want to optimize
the decision threshold used during `predict`.
response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
Methods by the classifier `estimator` corresponding to the
decision function for which we want to find a threshold. It can be:
* if `"auto"`, it will try to invoke, for each classifier,
`"predict_proba"` or `"decision_function"` in that order.
* otherwise, one of `"predict_proba"` or `"decision_function"`.
If the method is not implemented by the classifier, it will raise an
error.
"""
_parameter_constraints: dict = {
"estimator": [
HasMethods(["fit", "predict_proba"]),
HasMethods(["fit", "decision_function"]),
],
"response_method": [StrOptions({"auto", "predict_proba", "decision_function"})],
}
def __init__(self, estimator, *, response_method="auto"):
self.estimator = estimator
self.response_method = response_method
def _get_response_method(self):
"""Define the response method."""
if self.response_method == "auto":
response_method = ["predict_proba", "decision_function"]
else:
response_method = self.response_method
return response_method
@_fit_context(
# *ThresholdClassifier*.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, **params):
"""Fit the classifier.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
**params : dict
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
self : object
Returns an instance of self.
"""
_raise_for_params(params, self, None)
X, y = indexable(X, y)
y_type = type_of_target(y, input_name="y")
if y_type != "binary":
raise ValueError(
f"Only binary classification is supported. Unknown label type: {y_type}"
)
self._fit(X, y, **params)
if hasattr(self.estimator_, "n_features_in_"):
self.n_features_in_ = self.estimator_.n_features_in_
if hasattr(self.estimator_, "feature_names_in_"):
self.feature_names_in_ = self.estimator_.feature_names_in_
return self
@property
def classes_(self):
"""Classes labels."""
return self.estimator_.classes_
@available_if(_estimator_has("predict_proba"))
def predict_proba(self, X):
"""Predict class probabilities for `X` using the fitted estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
probabilities : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples.
"""
_check_is_fitted(self)
estimator = getattr(self, "estimator_", self.estimator)
return estimator.predict_proba(X)
@available_if(_estimator_has("predict_log_proba"))
def predict_log_proba(self, X):
"""Predict logarithm class probabilities for `X` using the fitted estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
log_probabilities : ndarray of shape (n_samples, n_classes)
The logarithm class probabilities of the input samples.
"""
_check_is_fitted(self)
estimator = getattr(self, "estimator_", self.estimator)
return estimator.predict_log_proba(X)
@available_if(_estimator_has("decision_function"))
def decision_function(self, X):
"""Decision function for samples in `X` using the fitted estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
decisions : ndarray of shape (n_samples,)
The decision function computed the fitted estimator.
"""
_check_is_fitted(self)
estimator = getattr(self, "estimator_", self.estimator)
return estimator.decision_function(X)
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.classifier_tags.multi_class = False
tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse
return tags
class FixedThresholdClassifier(BaseThresholdClassifier):
"""Binary classifier that manually sets the decision threshold.
This classifier allows to change the default decision threshold used for
converting posterior probability estimates (i.e. output of `predict_proba`) or
decision scores (i.e. output of `decision_function`) into a class label.
Here, the threshold is not optimized and is set to a constant value.
Read more in the :ref:`User Guide <FixedThresholdClassifier>`.
.. versionadded:: 1.5
Parameters
----------
estimator : estimator instance
The binary classifier, fitted or not, for which we want to optimize
the decision threshold used during `predict`.
threshold : {"auto"} or float, default="auto"
The decision threshold to use when converting posterior probability estimates
(i.e. output of `predict_proba`) or decision scores (i.e. output of
`decision_function`) into a class label. When `"auto"`, the threshold is set
to 0.5 if `predict_proba` is used as `response_method`, otherwise it is set to
0 (i.e. the default threshold for `decision_function`).
pos_label : int, float, bool or str, default=None
The label of the positive class. Used to process the output of the
`response_method` method. When `pos_label=None`, if `y_true` is in `{-1, 1}` or
`{0, 1}`, `pos_label` is set to 1, otherwise an error will be raised.
response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
Methods by the classifier `estimator` corresponding to the
decision function for which we want to find a threshold. It can be:
* if `"auto"`, it will try to invoke `"predict_proba"` or `"decision_function"`
in that order.
* otherwise, one of `"predict_proba"` or `"decision_function"`.
If the method is not implemented by the classifier, it will raise an
error.
Attributes
----------
estimator_ : estimator instance
The fitted classifier used when predicting.
classes_ : ndarray of shape (n_classes,)
The class labels.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
See Also
--------
sklearn.model_selection.TunedThresholdClassifierCV : Classifier that post-tunes
the decision threshold based on some metrics and using cross-validation.
sklearn.calibration.CalibratedClassifierCV : Estimator that calibrates
probabilities.
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import confusion_matrix
>>> from sklearn.model_selection import FixedThresholdClassifier, train_test_split
>>> X, y = make_classification(
... n_samples=1_000, weights=[0.9, 0.1], class_sep=0.8, random_state=42
... )
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, stratify=y, random_state=42
... )
>>> classifier = LogisticRegression(random_state=0).fit(X_train, y_train)
>>> print(confusion_matrix(y_test, classifier.predict(X_test)))
[[217 7]
[ 19 7]]
>>> classifier_other_threshold = FixedThresholdClassifier(
... classifier, threshold=0.1, response_method="predict_proba"
... ).fit(X_train, y_train)
>>> print(confusion_matrix(y_test, classifier_other_threshold.predict(X_test)))
[[184 40]
[ 6 20]]
"""
_parameter_constraints: dict = {
**BaseThresholdClassifier._parameter_constraints,
"threshold": [StrOptions({"auto"}), Real],
"pos_label": [Real, str, "boolean", None],
}
def __init__(
self,
estimator,
*,
threshold="auto",
pos_label=None,
response_method="auto",
):
super().__init__(estimator=estimator, response_method=response_method)
self.pos_label = pos_label
self.threshold = threshold
@property
def classes_(self):
if estimator := getattr(self, "estimator_", None):
return estimator.classes_
try:
check_is_fitted(self.estimator)
return self.estimator.classes_
except NotFittedError:
raise AttributeError(
"The underlying estimator is not fitted yet."
) from NotFittedError
def _fit(self, X, y, **params):
"""Fit the classifier.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
**params : dict
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
self : object
Returns an instance of self.
"""
routed_params = process_routing(self, "fit", **params)
self.estimator_ = clone(self.estimator).fit(X, y, **routed_params.estimator.fit)
return self
def predict(self, X):
"""Predict the target of new samples.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict`.
Returns
-------
class_labels : ndarray of shape (n_samples,)
The predicted class.
"""
_check_is_fitted(self)
estimator = getattr(self, "estimator_", self.estimator)
y_score, _, response_method_used = _get_response_values_binary(
estimator,
X,
self._get_response_method(),
pos_label=self.pos_label,
return_response_method_used=True,
)
if self.threshold == "auto":
decision_threshold = 0.5 if response_method_used == "predict_proba" else 0.0
else:
decision_threshold = self.threshold
return _threshold_scores_to_class_labels(
y_score, decision_threshold, self.classes_, self.pos_label
)
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping().add(callee="fit", caller="fit"),
)
return router
def _fit_and_score_over_thresholds(
classifier,
X,
y,
*,
fit_params,
train_idx,
val_idx,
curve_scorer,
score_params,
):
"""Fit a classifier and compute the scores for different decision thresholds.
Parameters
----------
classifier : estimator instance
The classifier to fit and use for scoring. If `classifier` is already fitted,
it will be used as is.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The entire dataset.
y : array-like of shape (n_samples,)
The entire target vector.
fit_params : dict
Parameters to pass to the `fit` method of the underlying classifier.
train_idx : ndarray of shape (n_train_samples,) or None
The indices of the training set. If `None`, `classifier` is expected to be
already fitted.
val_idx : ndarray of shape (n_val_samples,)
The indices of the validation set used to score `classifier`. If `train_idx`,
the entire set will be used.
curve_scorer : scorer instance
The scorer taking `classifier` and the validation set as input and outputting
decision thresholds and scores as a curve. Note that this is different from
the usual scorer that outputs a single score value as `curve_scorer`
outputs a single score value for each threshold.
score_params : dict
Parameters to pass to the `score` method of the underlying scorer.
Returns
-------
scores : ndarray of shape (thresholds,) or tuple of such arrays
The scores computed for each decision threshold. When TPR/TNR or precision/
recall are computed, `scores` is a tuple of two arrays.
potential_thresholds : ndarray of shape (thresholds,)
The decision thresholds used to compute the scores. They are returned in
ascending order.
"""
if train_idx is not None:
X_train, X_val = _safe_indexing(X, train_idx), _safe_indexing(X, val_idx)
y_train, y_val = _safe_indexing(y, train_idx), _safe_indexing(y, val_idx)
fit_params_train = _check_method_params(X, fit_params, indices=train_idx)
score_params_val = _check_method_params(X, score_params, indices=val_idx)
classifier.fit(X_train, y_train, **fit_params_train)
else: # prefit estimator, only a validation set is provided
X_val, y_val, score_params_val = X, y, score_params
return curve_scorer(classifier, X_val, y_val, **score_params_val)
def _mean_interpolated_score(target_thresholds, cv_thresholds, cv_scores):
"""Compute the mean interpolated score across folds by defining common thresholds.
Parameters
----------
target_thresholds : ndarray of shape (thresholds,)
The thresholds to use to compute the mean score.
cv_thresholds : ndarray of shape (n_folds, thresholds_fold)
The thresholds used to compute the scores for each fold.
cv_scores : ndarray of shape (n_folds, thresholds_fold)
The scores computed for each threshold for each fold.
Returns
-------
mean_score : ndarray of shape (thresholds,)
The mean score across all folds for each target threshold.
"""
return np.mean(
[
np.interp(target_thresholds, split_thresholds, split_score)
for split_thresholds, split_score in zip(cv_thresholds, cv_scores)
],
axis=0,
)
class TunedThresholdClassifierCV(BaseThresholdClassifier):
"""Classifier that post-tunes the decision threshold using cross-validation.
This estimator post-tunes the decision threshold (cut-off point) that is
used for converting posterior probability estimates (i.e. output of
`predict_proba`) or decision scores (i.e. output of `decision_function`)
into a class label. The tuning is done by optimizing a binary metric,
potentially constrained by a another metric.
Read more in the :ref:`User Guide <TunedThresholdClassifierCV>`.
.. versionadded:: 1.5
Parameters
----------
estimator : estimator instance
The classifier, fitted or not, for which we want to optimize
the decision threshold used during `predict`.
scoring : str or callable, default="balanced_accuracy"
The objective metric to be optimized. Can be one of:
- str: string associated to a scoring function for binary classification,
see :ref:`scoring_string_names` for options.
- callable: a scorer callable object (e.g., function) with signature
``scorer(estimator, X, y)``. See :ref:`scoring_callable` for details.
response_method : {"auto", "decision_function", "predict_proba"}, default="auto"
Methods by the classifier `estimator` corresponding to the
decision function for which we want to find a threshold. It can be:
* if `"auto"`, it will try to invoke, for each classifier,
`"predict_proba"` or `"decision_function"` in that order.
* otherwise, one of `"predict_proba"` or `"decision_function"`.
If the method is not implemented by the classifier, it will raise an
error.
thresholds : int or array-like, default=100
The number of decision threshold to use when discretizing the output of the
classifier `method`. Pass an array-like to manually specify the thresholds
to use.
cv : int, float, cross-validation generator, iterable or "prefit", default=None
Determines the cross-validation splitting strategy to train classifier.
Possible inputs for cv are:
* `None`, to use the default 5-fold stratified K-fold cross validation;
* An integer number, to specify the number of folds in a stratified k-fold;
* A float number, to specify a single shuffle split. The floating number should
be in (0, 1) and represent the size of the validation set;
* An object to be used as a cross-validation generator;
* An iterable yielding train, test splits;
* `"prefit"`, to bypass the cross-validation.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. warning::
Using `cv="prefit"` and passing the same dataset for fitting `estimator`
and tuning the cut-off point is subject to undesired overfitting. You can
refer to :ref:`TunedThresholdClassifierCV_no_cv` for an example.
This option should only be used when the set used to fit `estimator` is
different from the one used to tune the cut-off point (by calling
:meth:`TunedThresholdClassifierCV.fit`).
refit : bool, default=True
Whether or not to refit the classifier on the entire training set once
the decision threshold has been found.
Note that forcing `refit=False` on cross-validation having more
than a single split will raise an error. Similarly, `refit=True` in
conjunction with `cv="prefit"` will raise an error.
n_jobs : int, default=None
The number of jobs to run in parallel. When `cv` represents a
cross-validation strategy, the fitting and scoring on each data split
is done in parallel. ``None`` means 1 unless in a
:obj:`joblib.parallel_backend` context. ``-1`` means using all
processors. See :term:`Glossary <n_jobs>` for more details.
random_state : int, RandomState instance or None, default=None
Controls the randomness of cross-validation when `cv` is a float.
See :term:`Glossary <random_state>`.
store_cv_results : bool, default=False
Whether to store all scores and thresholds computed during the cross-validation
process.
Attributes
----------
estimator_ : estimator instance
The fitted classifier used when predicting.
best_threshold_ : float
The new decision threshold.
best_score_ : float or None
The optimal score of the objective metric, evaluated at `best_threshold_`.
cv_results_ : dict or None
A dictionary containing the scores and thresholds computed during the
cross-validation process. Only exist if `store_cv_results=True`. The
keys are `"thresholds"` and `"scores"`.
classes_ : ndarray of shape (n_classes,)
The class labels.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
See Also
--------
sklearn.model_selection.FixedThresholdClassifier : Classifier that uses a
constant threshold.
sklearn.calibration.CalibratedClassifierCV : Estimator that calibrates
probabilities.
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.metrics import classification_report
>>> from sklearn.model_selection import TunedThresholdClassifierCV, train_test_split
>>> X, y = make_classification(
... n_samples=1_000, weights=[0.9, 0.1], class_sep=0.8, random_state=42
... )
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, stratify=y, random_state=42
... )
>>> classifier = RandomForestClassifier(random_state=0).fit(X_train, y_train)
>>> print(classification_report(y_test, classifier.predict(X_test)))
precision recall f1-score support
<BLANKLINE>
0 0.94 0.99 0.96 224
1 0.80 0.46 0.59 26
<BLANKLINE>
accuracy 0.93 250
macro avg 0.87 0.72 0.77 250
weighted avg 0.93 0.93 0.92 250
<BLANKLINE>
>>> classifier_tuned = TunedThresholdClassifierCV(
... classifier, scoring="balanced_accuracy"
... ).fit(X_train, y_train)
>>> print(
... f"Cut-off point found at {classifier_tuned.best_threshold_:.3f}"
... )
Cut-off point found at 0.342
>>> print(classification_report(y_test, classifier_tuned.predict(X_test)))
precision recall f1-score support
<BLANKLINE>
0 0.96 0.95 0.96 224
1 0.61 0.65 0.63 26
<BLANKLINE>
accuracy 0.92 250
macro avg 0.78 0.80 0.79 250
weighted avg 0.92 0.92 0.92 250
<BLANKLINE>
"""
_parameter_constraints: dict = {
**BaseThresholdClassifier._parameter_constraints,
"scoring": [
StrOptions(set(get_scorer_names())),
callable,
MutableMapping,
],
"thresholds": [Interval(Integral, 1, None, closed="left"), "array-like"],
"cv": [
"cv_object",
StrOptions({"prefit"}),
Interval(RealNotInt, 0.0, 1.0, closed="neither"),
],
"refit": ["boolean"],
"n_jobs": [Integral, None],
"random_state": ["random_state"],
"store_cv_results": ["boolean"],
}
def __init__(
self,
estimator,
*,
scoring="balanced_accuracy",
response_method="auto",
thresholds=100,
cv=None,
refit=True,
n_jobs=None,
random_state=None,
store_cv_results=False,
):
super().__init__(estimator=estimator, response_method=response_method)
self.scoring = scoring
self.thresholds = thresholds
self.cv = cv
self.refit = refit
self.n_jobs = n_jobs
self.random_state = random_state
self.store_cv_results = store_cv_results
def _fit(self, X, y, **params):
"""Fit the classifier and post-tune the decision threshold.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
**params : dict
Parameters to pass to the `fit` method of the underlying
classifier and to the `scoring` scorer.
Returns
-------
self : object
Returns an instance of self.
"""
if isinstance(self.cv, Real) and 0 < self.cv < 1:
cv = StratifiedShuffleSplit(
n_splits=1, test_size=self.cv, random_state=self.random_state
)
elif self.cv == "prefit":
if self.refit is True:
raise ValueError("When cv='prefit', refit cannot be True.")
try:
check_is_fitted(self.estimator, "classes_")
except NotFittedError as exc:
raise NotFittedError(
"""When cv='prefit', `estimator` must be fitted."""
) from exc
cv = self.cv
else:
cv = check_cv(self.cv, y=y, classifier=True)
if self.refit is False and cv.get_n_splits() > 1:
raise ValueError("When cv has several folds, refit cannot be False.")
routed_params = process_routing(self, "fit", **params)
self._curve_scorer = self._get_curve_scorer()
# in the following block, we:
# - define the final classifier `self.estimator_` and train it if necessary
# - define `classifier` to be used to post-tune the decision threshold
# - define `split` to be used to fit/score `classifier`
if cv == "prefit":
self.estimator_ = self.estimator
classifier = self.estimator_
splits = [(None, range(_num_samples(X)))]
else:
self.estimator_ = clone(self.estimator)
classifier = clone(self.estimator)
splits = cv.split(X, y, **routed_params.splitter.split)
if self.refit:
# train on the whole dataset
X_train, y_train, fit_params_train = X, y, routed_params.estimator.fit
else:
# single split cross-validation
train_idx, _ = next(cv.split(X, y, **routed_params.splitter.split))
X_train = _safe_indexing(X, train_idx)
y_train = _safe_indexing(y, train_idx)
fit_params_train = _check_method_params(
X, routed_params.estimator.fit, indices=train_idx
)
self.estimator_.fit(X_train, y_train, **fit_params_train)
cv_scores, cv_thresholds = zip(
*Parallel(n_jobs=self.n_jobs)(
delayed(_fit_and_score_over_thresholds)(
clone(classifier) if cv != "prefit" else classifier,
X,
y,
fit_params=routed_params.estimator.fit,
train_idx=train_idx,
val_idx=val_idx,
curve_scorer=self._curve_scorer,
score_params=routed_params.scorer.score,
)
for train_idx, val_idx in splits
)
)
if any(np.isclose(th[0], th[-1]) for th in cv_thresholds):
raise ValueError(
"The provided estimator makes constant predictions. Therefore, it is "
"impossible to optimize the decision threshold."
)
# find the global min and max thresholds across all folds
min_threshold = min(
split_thresholds.min() for split_thresholds in cv_thresholds
)
max_threshold = max(
split_thresholds.max() for split_thresholds in cv_thresholds
)
if isinstance(self.thresholds, Integral):
decision_thresholds = np.linspace(
min_threshold, max_threshold, num=self.thresholds
)
else:
decision_thresholds = np.asarray(self.thresholds)
objective_scores = _mean_interpolated_score(
decision_thresholds, cv_thresholds, cv_scores
)
best_idx = objective_scores.argmax()
self.best_score_ = objective_scores[best_idx]
self.best_threshold_ = decision_thresholds[best_idx]
if self.store_cv_results:
self.cv_results_ = {
"thresholds": decision_thresholds,
"scores": objective_scores,
}
return self
def predict(self, X):
"""Predict the target of new samples.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict`.
Returns
-------
class_labels : ndarray of shape (n_samples,)
The predicted class.
"""
check_is_fitted(self, "estimator_")
pos_label = self._curve_scorer._get_pos_label()
y_score, _ = _get_response_values_binary(
self.estimator_,
X,
self._get_response_method(),
pos_label=pos_label,
)
return _threshold_scores_to_class_labels(
y_score, self.best_threshold_, self.classes_, pos_label
)
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add(
estimator=self.estimator,
method_mapping=MethodMapping().add(callee="fit", caller="fit"),
)
.add(
splitter=self.cv,
method_mapping=MethodMapping().add(callee="split", caller="fit"),
)
.add(
scorer=self._get_curve_scorer(),
method_mapping=MethodMapping().add(callee="score", caller="fit"),
)
)
return router
def _get_curve_scorer(self):
"""Get the curve scorer based on the objective metric used."""
scoring = check_scoring(self.estimator, scoring=self.scoring)
curve_scorer = _CurveScorer.from_scorer(
scoring, self._get_response_method(), self.thresholds
)
return curve_scorer
|