1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
import joblib
import numpy as np
import pytest
from sklearn.datasets import make_blobs
from sklearn.exceptions import NotFittedError
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KDTree, KernelDensity, NearestNeighbors
from sklearn.neighbors._ball_tree import kernel_norm
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils._testing import assert_allclose
# XXX Duplicated in test_neighbors_tree, test_kde
def compute_kernel_slow(Y, X, kernel, h):
if h == "scott":
h = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif h == "silverman":
h = (X.shape[0] * (X.shape[1] + 2) / 4) ** (-1 / (X.shape[1] + 4))
d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1))
norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0]
if kernel == "gaussian":
return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1)
elif kernel == "tophat":
return norm * (d < h).sum(-1)
elif kernel == "epanechnikov":
return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1)
elif kernel == "exponential":
return norm * (np.exp(-d / h)).sum(-1)
elif kernel == "linear":
return norm * ((1 - d / h) * (d < h)).sum(-1)
elif kernel == "cosine":
return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1)
else:
raise ValueError("kernel not recognized")
def check_results(kernel, bandwidth, atol, rtol, X, Y, dens_true):
kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol)
log_dens = kde.fit(X).score_samples(Y)
assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1e-7, rtol))
assert_allclose(
np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1e-7, rtol)
)
@pytest.mark.parametrize(
"kernel", ["gaussian", "tophat", "epanechnikov", "exponential", "linear", "cosine"]
)
@pytest.mark.parametrize("bandwidth", [0.01, 0.1, 1, "scott", "silverman"])
def test_kernel_density(kernel, bandwidth):
n_samples, n_features = (100, 3)
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
Y = rng.randn(n_samples, n_features)
dens_true = compute_kernel_slow(Y, X, kernel, bandwidth)
for rtol in [0, 1e-5]:
for atol in [1e-6, 1e-2]:
for breadth_first in (True, False):
check_results(kernel, bandwidth, atol, rtol, X, Y, dens_true)
def test_kernel_density_sampling(n_samples=100, n_features=3):
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
bandwidth = 0.2
for kernel in ["gaussian", "tophat"]:
# draw a tophat sample
kde = KernelDensity(bandwidth=bandwidth, kernel=kernel).fit(X)
samp = kde.sample(100)
assert X.shape == samp.shape
# check that samples are in the right range
nbrs = NearestNeighbors(n_neighbors=1).fit(X)
dist, ind = nbrs.kneighbors(X, return_distance=True)
if kernel == "tophat":
assert np.all(dist < bandwidth)
elif kernel == "gaussian":
# 5 standard deviations is safe for 100 samples, but there's a
# very small chance this test could fail.
assert np.all(dist < 5 * bandwidth)
# check unsupported kernels
for kernel in ["epanechnikov", "exponential", "linear", "cosine"]:
kde = KernelDensity(bandwidth=bandwidth, kernel=kernel).fit(X)
with pytest.raises(NotImplementedError):
kde.sample(100)
# non-regression test: used to return a scalar
X = rng.randn(4, 1)
kde = KernelDensity(kernel="gaussian").fit(X)
assert kde.sample().shape == (1, 1)
@pytest.mark.parametrize("algorithm", ["auto", "ball_tree", "kd_tree"])
@pytest.mark.parametrize(
"metric", ["euclidean", "minkowski", "manhattan", "chebyshev", "haversine"]
)
def test_kde_algorithm_metric_choice(algorithm, metric):
# Smoke test for various metrics and algorithms
rng = np.random.RandomState(0)
X = rng.randn(10, 2) # 2 features required for haversine dist.
Y = rng.randn(10, 2)
kde = KernelDensity(algorithm=algorithm, metric=metric)
if algorithm == "kd_tree" and metric not in KDTree.valid_metrics:
with pytest.raises(ValueError, match="invalid metric"):
kde.fit(X)
else:
kde.fit(X)
y_dens = kde.score_samples(Y)
assert y_dens.shape == Y.shape[:1]
def test_kde_score(n_samples=100, n_features=3):
pass
# FIXME
# rng = np.random.RandomState(0)
# X = rng.random_sample((n_samples, n_features))
# Y = rng.random_sample((n_samples, n_features))
def test_kde_sample_weights_error():
kde = KernelDensity()
with pytest.raises(ValueError):
kde.fit(np.random.random((200, 10)), sample_weight=np.random.random((200, 10)))
with pytest.raises(ValueError):
kde.fit(np.random.random((200, 10)), sample_weight=-np.random.random(200))
def test_kde_pipeline_gridsearch():
# test that kde plays nice in pipelines and grid-searches
X, _ = make_blobs(cluster_std=0.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]])
pipe1 = make_pipeline(
StandardScaler(with_mean=False, with_std=False),
KernelDensity(kernel="gaussian"),
)
params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10])
search = GridSearchCV(pipe1, param_grid=params)
search.fit(X)
assert search.best_params_["kerneldensity__bandwidth"] == 0.1
def test_kde_sample_weights():
n_samples = 400
size_test = 20
weights_neutral = np.full(n_samples, 3.0)
for d in [1, 2, 10]:
rng = np.random.RandomState(0)
X = rng.rand(n_samples, d)
weights = 1 + (10 * X.sum(axis=1)).astype(np.int8)
X_repetitions = np.repeat(X, weights, axis=0)
n_samples_test = size_test // d
test_points = rng.rand(n_samples_test, d)
for algorithm in ["auto", "ball_tree", "kd_tree"]:
for metric in ["euclidean", "minkowski", "manhattan", "chebyshev"]:
if algorithm != "kd_tree" or metric in KDTree.valid_metrics:
kde = KernelDensity(algorithm=algorithm, metric=metric)
# Test that adding a constant sample weight has no effect
kde.fit(X, sample_weight=weights_neutral)
scores_const_weight = kde.score_samples(test_points)
sample_const_weight = kde.sample(random_state=1234)
kde.fit(X)
scores_no_weight = kde.score_samples(test_points)
sample_no_weight = kde.sample(random_state=1234)
assert_allclose(scores_const_weight, scores_no_weight)
assert_allclose(sample_const_weight, sample_no_weight)
# Test equivalence between sampling and (integer) weights
kde.fit(X, sample_weight=weights)
scores_weight = kde.score_samples(test_points)
sample_weight = kde.sample(random_state=1234)
kde.fit(X_repetitions)
scores_ref_sampling = kde.score_samples(test_points)
sample_ref_sampling = kde.sample(random_state=1234)
assert_allclose(scores_weight, scores_ref_sampling)
assert_allclose(sample_weight, sample_ref_sampling)
# Test that sample weights has a non-trivial effect
diff = np.max(np.abs(scores_no_weight - scores_weight))
assert diff > 0.001
# Test invariance with respect to arbitrary scaling
scale_factor = rng.rand()
kde.fit(X, sample_weight=(scale_factor * weights))
scores_scaled_weight = kde.score_samples(test_points)
assert_allclose(scores_scaled_weight, scores_weight)
@pytest.mark.parametrize("sample_weight", [None, [0.1, 0.2, 0.3]])
def test_pickling(tmpdir, sample_weight):
# Make sure that predictions are the same before and after pickling. Used
# to be a bug because sample_weights wasn't pickled and the resulting tree
# would miss some info.
kde = KernelDensity()
data = np.reshape([1.0, 2.0, 3.0], (-1, 1))
kde.fit(data, sample_weight=sample_weight)
X = np.reshape([1.1, 2.1], (-1, 1))
scores = kde.score_samples(X)
file_path = str(tmpdir.join("dump.pkl"))
joblib.dump(kde, file_path)
kde = joblib.load(file_path)
scores_pickled = kde.score_samples(X)
assert_allclose(scores, scores_pickled)
@pytest.mark.parametrize("method", ["score_samples", "sample"])
def test_check_is_fitted(method):
# Check that predict raises an exception in an unfitted estimator.
# Unfitted estimators should raise a NotFittedError.
rng = np.random.RandomState(0)
X = rng.randn(10, 2)
kde = KernelDensity()
with pytest.raises(NotFittedError):
getattr(kde, method)(X)
@pytest.mark.parametrize("bandwidth", ["scott", "silverman", 0.1])
def test_bandwidth(bandwidth):
n_samples, n_features = (100, 3)
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
kde = KernelDensity(bandwidth=bandwidth).fit(X)
samp = kde.sample(100)
kde_sc = kde.score_samples(X)
assert X.shape == samp.shape
assert kde_sc.shape == (n_samples,)
# Test that the attribute self.bandwidth_ has the expected value
if bandwidth == "scott":
h = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif bandwidth == "silverman":
h = (X.shape[0] * (X.shape[1] + 2) / 4) ** (-1 / (X.shape[1] + 4))
else:
h = bandwidth
assert kde.bandwidth_ == pytest.approx(h)
|