File: _self_training.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (625 lines) | stat: -rw-r--r-- 22,014 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import warnings
from numbers import Integral, Real
from warnings import warn

import numpy as np

from ..base import (
    BaseEstimator,
    ClassifierMixin,
    MetaEstimatorMixin,
    _fit_context,
    clone,
)
from ..utils import Bunch, get_tags, safe_mask
from ..utils._param_validation import HasMethods, Hidden, Interval, StrOptions
from ..utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    _routing_enabled,
    process_routing,
)
from ..utils.metaestimators import available_if
from ..utils.validation import _estimator_has, check_is_fitted, validate_data

__all__ = ["SelfTrainingClassifier"]

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


class SelfTrainingClassifier(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
    """Self-training classifier.

    This :term:`metaestimator` allows a given supervised classifier to function as a
    semi-supervised classifier, allowing it to learn from unlabeled data. It
    does this by iteratively predicting pseudo-labels for the unlabeled data
    and adding them to the training set.

    The classifier will continue iterating until either max_iter is reached, or
    no pseudo-labels were added to the training set in the previous iteration.

    Read more in the :ref:`User Guide <self_training>`.

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing `fit` and `predict_proba`.
        Invoking the `fit` method will fit a clone of the passed estimator,
        which will be stored in the `estimator_` attribute.

        .. versionadded:: 1.6
            `estimator` was added to replace `base_estimator`.

    base_estimator : estimator object
        An estimator object implementing `fit` and `predict_proba`.
        Invoking the `fit` method will fit a clone of the passed estimator,
        which will be stored in the `estimator_` attribute.

        .. deprecated:: 1.6
            `base_estimator` was deprecated in 1.6 and will be removed in 1.8.
            Use `estimator` instead.

    threshold : float, default=0.75
        The decision threshold for use with `criterion='threshold'`.
        Should be in [0, 1). When using the `'threshold'` criterion, a
        :ref:`well calibrated classifier <calibration>` should be used.

    criterion : {'threshold', 'k_best'}, default='threshold'
        The selection criterion used to select which labels to add to the
        training set. If `'threshold'`, pseudo-labels with prediction
        probabilities above `threshold` are added to the dataset. If `'k_best'`,
        the `k_best` pseudo-labels with highest prediction probabilities are
        added to the dataset. When using the 'threshold' criterion, a
        :ref:`well calibrated classifier <calibration>` should be used.

    k_best : int, default=10
        The amount of samples to add in each iteration. Only used when
        `criterion='k_best'`.

    max_iter : int or None, default=10
        Maximum number of iterations allowed. Should be greater than or equal
        to 0. If it is `None`, the classifier will continue to predict labels
        until no new pseudo-labels are added, or all unlabeled samples have
        been labeled.

    verbose : bool, default=False
        Enable verbose output.

    Attributes
    ----------
    estimator_ : estimator object
        The fitted estimator.

    classes_ : ndarray or list of ndarray of shape (n_classes,)
        Class labels for each output. (Taken from the trained
        `estimator_`).

    transduction_ : ndarray of shape (n_samples,)
        The labels used for the final fit of the classifier, including
        pseudo-labels added during fit.

    labeled_iter_ : ndarray of shape (n_samples,)
        The iteration in which each sample was labeled. When a sample has
        iteration 0, the sample was already labeled in the original dataset.
        When a sample has iteration -1, the sample was not labeled in any
        iteration.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        The number of rounds of self-training, that is the number of times the
        base estimator is fitted on relabeled variants of the training set.

    termination_condition_ : {'max_iter', 'no_change', 'all_labeled'}
        The reason that fitting was stopped.

        - `'max_iter'`: `n_iter_` reached `max_iter`.
        - `'no_change'`: no new labels were predicted.
        - `'all_labeled'`: all unlabeled samples were labeled before `max_iter`
          was reached.

    See Also
    --------
    LabelPropagation : Label propagation classifier.
    LabelSpreading : Label spreading model for semi-supervised learning.

    References
    ----------
    :doi:`David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling
    supervised methods. In Proceedings of the 33rd annual meeting on
    Association for Computational Linguistics (ACL '95). Association for
    Computational Linguistics, Stroudsburg, PA, USA, 189-196.
    <10.3115/981658.981684>`

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import datasets
    >>> from sklearn.semi_supervised import SelfTrainingClassifier
    >>> from sklearn.svm import SVC
    >>> rng = np.random.RandomState(42)
    >>> iris = datasets.load_iris()
    >>> random_unlabeled_points = rng.rand(iris.target.shape[0]) < 0.3
    >>> iris.target[random_unlabeled_points] = -1
    >>> svc = SVC(probability=True, gamma="auto")
    >>> self_training_model = SelfTrainingClassifier(svc)
    >>> self_training_model.fit(iris.data, iris.target)
    SelfTrainingClassifier(...)
    """

    _parameter_constraints: dict = {
        # We don't require `predic_proba` here to allow passing a meta-estimator
        # that only exposes `predict_proba` after fitting.
        # TODO(1.8) remove None option
        "estimator": [None, HasMethods(["fit"])],
        # TODO(1.8) remove
        "base_estimator": [
            HasMethods(["fit"]),
            Hidden(StrOptions({"deprecated"})),
        ],
        "threshold": [Interval(Real, 0.0, 1.0, closed="left")],
        "criterion": [StrOptions({"threshold", "k_best"})],
        "k_best": [Interval(Integral, 1, None, closed="left")],
        "max_iter": [Interval(Integral, 0, None, closed="left"), None],
        "verbose": ["verbose"],
    }

    def __init__(
        self,
        estimator=None,
        base_estimator="deprecated",
        threshold=0.75,
        criterion="threshold",
        k_best=10,
        max_iter=10,
        verbose=False,
    ):
        self.estimator = estimator
        self.threshold = threshold
        self.criterion = criterion
        self.k_best = k_best
        self.max_iter = max_iter
        self.verbose = verbose

        # TODO(1.8) remove
        self.base_estimator = base_estimator

    def _get_estimator(self):
        """Get the estimator.

        Returns
        -------
        estimator_ : estimator object
            The cloned estimator object.
        """
        # TODO(1.8): remove and only keep clone(self.estimator)
        if self.estimator is None and self.base_estimator != "deprecated":
            estimator_ = clone(self.base_estimator)

            warn(
                (
                    "`base_estimator` has been deprecated in 1.6 and will be removed"
                    " in 1.8. Please use `estimator` instead."
                ),
                FutureWarning,
            )
        # TODO(1.8) remove
        elif self.estimator is None and self.base_estimator == "deprecated":
            raise ValueError(
                "You must pass an estimator to SelfTrainingClassifier. Use `estimator`."
            )
        elif self.estimator is not None and self.base_estimator != "deprecated":
            raise ValueError(
                "You must pass only one estimator to SelfTrainingClassifier."
                " Use `estimator`."
            )
        else:
            estimator_ = clone(self.estimator)
        return estimator_

    @_fit_context(
        # SelfTrainingClassifier.estimator is not validated yet
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y, **params):
        """
        Fit self-training classifier using `X`, `y` as training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        y : {array-like, sparse matrix} of shape (n_samples,)
            Array representing the labels. Unlabeled samples should have the
            label -1.

        **params : dict
            Parameters to pass to the underlying estimators.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        _raise_for_params(params, self, "fit")

        self.estimator_ = self._get_estimator()

        # we need row slicing support for sparse matrices, but costly finiteness check
        # can be delegated to the base estimator.
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=["csr", "csc", "lil", "dok"],
            ensure_all_finite=False,
        )

        if y.dtype.kind in ["U", "S"]:
            raise ValueError(
                "y has dtype string. If you wish to predict on "
                "string targets, use dtype object, and use -1"
                " as the label for unlabeled samples."
            )

        has_label = y != -1

        if np.all(has_label):
            warnings.warn("y contains no unlabeled samples", UserWarning)

        if self.criterion == "k_best" and (
            self.k_best > X.shape[0] - np.sum(has_label)
        ):
            warnings.warn(
                (
                    "k_best is larger than the amount of unlabeled "
                    "samples. All unlabeled samples will be labeled in "
                    "the first iteration"
                ),
                UserWarning,
            )

        if _routing_enabled():
            routed_params = process_routing(self, "fit", **params)
        else:
            routed_params = Bunch(estimator=Bunch(fit={}))

        self.transduction_ = np.copy(y)
        self.labeled_iter_ = np.full_like(y, -1)
        self.labeled_iter_[has_label] = 0

        self.n_iter_ = 0

        while not np.all(has_label) and (
            self.max_iter is None or self.n_iter_ < self.max_iter
        ):
            self.n_iter_ += 1
            self.estimator_.fit(
                X[safe_mask(X, has_label)],
                self.transduction_[has_label],
                **routed_params.estimator.fit,
            )

            # Predict on the unlabeled samples
            prob = self.estimator_.predict_proba(X[safe_mask(X, ~has_label)])
            pred = self.estimator_.classes_[np.argmax(prob, axis=1)]
            max_proba = np.max(prob, axis=1)

            # Select new labeled samples
            if self.criterion == "threshold":
                selected = max_proba > self.threshold
            else:
                n_to_select = min(self.k_best, max_proba.shape[0])
                if n_to_select == max_proba.shape[0]:
                    selected = np.ones_like(max_proba, dtype=bool)
                else:
                    # NB these are indices, not a mask
                    selected = np.argpartition(-max_proba, n_to_select)[:n_to_select]

            # Map selected indices into original array
            selected_full = np.nonzero(~has_label)[0][selected]

            # Add newly labeled confident predictions to the dataset
            self.transduction_[selected_full] = pred[selected]
            has_label[selected_full] = True
            self.labeled_iter_[selected_full] = self.n_iter_

            if selected_full.shape[0] == 0:
                # no changed labels
                self.termination_condition_ = "no_change"
                break

            if self.verbose:
                print(
                    f"End of iteration {self.n_iter_},"
                    f" added {selected_full.shape[0]} new labels."
                )

        if self.n_iter_ == self.max_iter:
            self.termination_condition_ = "max_iter"
        if np.all(has_label):
            self.termination_condition_ = "all_labeled"

        self.estimator_.fit(
            X[safe_mask(X, has_label)],
            self.transduction_[has_label],
            **routed_params.estimator.fit,
        )
        self.classes_ = self.estimator_.classes_
        return self

    @available_if(_estimator_has("predict"))
    def predict(self, X, **params):
        """Predict the classes of `X`.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        **params : dict of str -> object
            Parameters to pass to the underlying estimator's ``predict`` method.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            Array with predicted labels.
        """
        check_is_fitted(self)
        _raise_for_params(params, self, "predict")

        if _routing_enabled():
            # metadata routing is enabled.
            routed_params = process_routing(self, "predict", **params)
        else:
            routed_params = Bunch(estimator=Bunch(predict={}))

        X = validate_data(
            self,
            X,
            accept_sparse=True,
            ensure_all_finite=False,
            reset=False,
        )
        return self.estimator_.predict(X, **routed_params.estimator.predict)

    @available_if(_estimator_has("predict_proba"))
    def predict_proba(self, X, **params):
        """Predict probability for each possible outcome.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        **params : dict of str -> object
            Parameters to pass to the underlying estimator's
            ``predict_proba`` method.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        y : ndarray of shape (n_samples, n_features)
            Array with prediction probabilities.
        """
        check_is_fitted(self)
        _raise_for_params(params, self, "predict_proba")

        if _routing_enabled():
            # metadata routing is enabled.
            routed_params = process_routing(self, "predict_proba", **params)
        else:
            routed_params = Bunch(estimator=Bunch(predict_proba={}))

        X = validate_data(
            self,
            X,
            accept_sparse=True,
            ensure_all_finite=False,
            reset=False,
        )
        return self.estimator_.predict_proba(X, **routed_params.estimator.predict_proba)

    @available_if(_estimator_has("decision_function"))
    def decision_function(self, X, **params):
        """Call decision function of the `estimator`.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        **params : dict of str -> object
            Parameters to pass to the underlying estimator's
            ``decision_function`` method.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        y : ndarray of shape (n_samples, n_features)
            Result of the decision function of the `estimator`.
        """
        check_is_fitted(self)
        _raise_for_params(params, self, "decision_function")

        if _routing_enabled():
            # metadata routing is enabled.
            routed_params = process_routing(self, "decision_function", **params)
        else:
            routed_params = Bunch(estimator=Bunch(decision_function={}))

        X = validate_data(
            self,
            X,
            accept_sparse=True,
            ensure_all_finite=False,
            reset=False,
        )
        return self.estimator_.decision_function(
            X, **routed_params.estimator.decision_function
        )

    @available_if(_estimator_has("predict_log_proba"))
    def predict_log_proba(self, X, **params):
        """Predict log probability for each possible outcome.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        **params : dict of str -> object
            Parameters to pass to the underlying estimator's
            ``predict_log_proba`` method.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        y : ndarray of shape (n_samples, n_features)
            Array with log prediction probabilities.
        """
        check_is_fitted(self)
        _raise_for_params(params, self, "predict_log_proba")

        if _routing_enabled():
            # metadata routing is enabled.
            routed_params = process_routing(self, "predict_log_proba", **params)
        else:
            routed_params = Bunch(estimator=Bunch(predict_log_proba={}))

        X = validate_data(
            self,
            X,
            accept_sparse=True,
            ensure_all_finite=False,
            reset=False,
        )
        return self.estimator_.predict_log_proba(
            X, **routed_params.estimator.predict_log_proba
        )

    @available_if(_estimator_has("score"))
    def score(self, X, y, **params):
        """Call score on the `estimator`.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Array representing the data.

        y : array-like of shape (n_samples,)
            Array representing the labels.

        **params : dict of str -> object
            Parameters to pass to the underlying estimator's ``score`` method.

            .. versionadded:: 1.6
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        score : float
            Result of calling score on the `estimator`.
        """
        check_is_fitted(self)
        _raise_for_params(params, self, "score")

        if _routing_enabled():
            # metadata routing is enabled.
            routed_params = process_routing(self, "score", **params)
        else:
            routed_params = Bunch(estimator=Bunch(score={}))

        X = validate_data(
            self,
            X,
            accept_sparse=True,
            ensure_all_finite=False,
            reset=False,
        )
        return self.estimator_.score(X, y, **routed_params.estimator.score)

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.6

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = MetadataRouter(owner=self.__class__.__name__)
        router.add(
            estimator=self.estimator,
            method_mapping=(
                MethodMapping()
                .add(callee="fit", caller="fit")
                .add(callee="score", caller="fit")
                .add(callee="predict", caller="predict")
                .add(callee="predict_proba", caller="predict_proba")
                .add(callee="decision_function", caller="decision_function")
                .add(callee="predict_log_proba", caller="predict_log_proba")
                .add(callee="score", caller="score")
            ),
        )
        return router

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        # TODO(1.8): remove the condition check together with base_estimator
        if self.estimator is not None:
            tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse
        return tags