File: test_metaestimators_metadata_routing.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (927 lines) | stat: -rw-r--r-- 32,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
import copy
import re

import numpy as np
import pytest

from sklearn import config_context
from sklearn.base import BaseEstimator, is_classifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.compose import TransformedTargetRegressor
from sklearn.covariance import GraphicalLassoCV
from sklearn.ensemble import (
    AdaBoostClassifier,
    AdaBoostRegressor,
    BaggingClassifier,
    BaggingRegressor,
)
from sklearn.exceptions import UnsetMetadataPassedError
from sklearn.experimental import (
    enable_halving_search_cv,  # noqa: F401
    enable_iterative_imputer,  # noqa: F401
)
from sklearn.feature_selection import (
    RFE,
    RFECV,
    SelectFromModel,
    SequentialFeatureSelector,
)
from sklearn.impute import IterativeImputer
from sklearn.linear_model import (
    ElasticNetCV,
    LarsCV,
    LassoCV,
    LassoLarsCV,
    LogisticRegressionCV,
    MultiTaskElasticNetCV,
    MultiTaskLassoCV,
    OrthogonalMatchingPursuitCV,
    RANSACRegressor,
    RidgeClassifierCV,
    RidgeCV,
)
from sklearn.metrics._regression import mean_squared_error
from sklearn.metrics._scorer import make_scorer
from sklearn.model_selection import (
    FixedThresholdClassifier,
    GridSearchCV,
    GroupKFold,
    HalvingGridSearchCV,
    HalvingRandomSearchCV,
    RandomizedSearchCV,
    TunedThresholdClassifierCV,
    cross_validate,
)
from sklearn.multiclass import (
    OneVsOneClassifier,
    OneVsRestClassifier,
    OutputCodeClassifier,
)
from sklearn.multioutput import (
    ClassifierChain,
    MultiOutputClassifier,
    MultiOutputRegressor,
    RegressorChain,
)
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.tests.metadata_routing_common import (
    ConsumingClassifier,
    ConsumingRegressor,
    ConsumingScorer,
    ConsumingSplitter,
    NonConsumingClassifier,
    NonConsumingRegressor,
    _Registry,
    assert_request_is_empty,
    check_recorded_metadata,
)
from sklearn.utils.metadata_routing import MetadataRouter

rng = np.random.RandomState(42)
N, M = 100, 4
X = rng.rand(N, M)
y = rng.randint(0, 3, size=N)
y_binary = (y >= 1).astype(int)
classes = np.unique(y)
y_multi = rng.randint(0, 3, size=(N, 3))
classes_multi = [np.unique(y_multi[:, i]) for i in range(y_multi.shape[1])]
metadata = rng.randint(0, 10, size=N)
sample_weight = rng.rand(N)
groups = rng.randint(0, 10, size=len(y))


METAESTIMATORS: list = [
    {
        "metaestimator": MultiOutputRegressor,
        "estimator_name": "estimator",
        "estimator": "regressor",
        "X": X,
        "y": y_multi,
        "estimator_routing_methods": ["fit", "partial_fit"],
    },
    {
        "metaestimator": MultiOutputClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y_multi,
        "estimator_routing_methods": ["fit", "partial_fit"],
        "method_args": {"partial_fit": {"classes": classes_multi}},
    },
    {
        "metaestimator": CalibratedClassifierCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
    },
    {
        "metaestimator": ClassifierChain,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y_multi,
        "estimator_routing_methods": ["fit"],
    },
    {
        "metaestimator": RegressorChain,
        "estimator_name": "estimator",
        "estimator": "regressor",
        "X": X,
        "y": y_multi,
        "estimator_routing_methods": ["fit"],
    },
    {
        "metaestimator": LogisticRegressionCV,
        "X": X,
        "y": y,
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": GridSearchCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "init_args": {"param_grid": {"alpha": [0.1, 0.2]}},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": RandomizedSearchCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "init_args": {"param_distributions": {"alpha": [0.1, 0.2]}},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": HalvingGridSearchCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "init_args": {"param_grid": {"alpha": [0.1, 0.2]}},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": HalvingRandomSearchCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "init_args": {"param_distributions": {"alpha": [0.1, 0.2]}},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": FixedThresholdClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y_binary,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
    },
    {
        "metaestimator": TunedThresholdClassifierCV,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y_binary,
        "estimator_routing_methods": ["fit"],
        "preserves_metadata": "subset",
    },
    {
        "metaestimator": OneVsRestClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit", "partial_fit"],
        "method_args": {"partial_fit": {"classes": classes}},
    },
    {
        "metaestimator": OneVsOneClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit", "partial_fit"],
        "preserves_metadata": "subset",
        "method_args": {"partial_fit": {"classes": classes}},
    },
    {
        "metaestimator": OutputCodeClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "init_args": {"random_state": 42},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
    },
    {
        "metaestimator": SelectFromModel,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit", "partial_fit"],
        "method_args": {"partial_fit": {"classes": classes}},
    },
    {
        "metaestimator": OrthogonalMatchingPursuitCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": ElasticNetCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": LassoCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": MultiTaskElasticNetCV,
        "X": X,
        "y": y_multi,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": MultiTaskLassoCV,
        "X": X,
        "y": y_multi,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": LarsCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": LassoLarsCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": RANSACRegressor,
        "estimator_name": "estimator",
        "estimator": "regressor",
        "init_args": {"min_samples": 0.5},
        "X": X,
        "y": y,
        "preserves_metadata": "subset",
        "estimator_routing_methods": ["fit", "predict", "score"],
        "method_mapping": {"fit": ["fit", "score"]},
    },
    {
        "metaestimator": IterativeImputer,
        "estimator_name": "estimator",
        "estimator": "regressor",
        "init_args": {"skip_complete": False},
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
    },
    {
        "metaestimator": BaggingClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "preserves_metadata": False,
        "estimator_routing_methods": [
            "fit",
            "predict",
            "predict_proba",
            "predict_log_proba",
            "decision_function",
        ],
        "method_mapping": {
            "predict": ["predict", "predict_proba"],
            "predict_proba": ["predict", "predict_proba"],
            "predict_log_proba": ["predict", "predict_proba", "predict_log_proba"],
        },
    },
    {
        "metaestimator": BaggingRegressor,
        "estimator_name": "estimator",
        "estimator": "regressor",
        "X": X,
        "y": y,
        "preserves_metadata": False,
        "estimator_routing_methods": ["fit", "predict"],
    },
    {
        "metaestimator": RidgeCV,
        "X": X,
        "y": y,
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit"],
    },
    {
        "metaestimator": RidgeClassifierCV,
        "X": X,
        "y": y,
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit"],
    },
    {
        "metaestimator": RidgeCV,
        "X": X,
        "y": y,
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": RidgeClassifierCV,
        "X": X,
        "y": y,
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": GraphicalLassoCV,
        "X": X,
        "y": y,
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": TransformedTargetRegressor,
        "estimator": "regressor",
        "estimator_name": "regressor",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit", "predict"],
    },
    {
        "metaestimator": SelfTrainingClassifier,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "preserves_metadata": True,
        "estimator_routing_methods": [
            "fit",
            "predict",
            "predict_proba",
            "predict_log_proba",
            "decision_function",
            "score",
        ],
        "method_mapping": {"fit": ["fit", "score"]},
    },
    {
        "metaestimator": SequentialFeatureSelector,
        "estimator_name": "estimator",
        "estimator": "classifier",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit"],
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
    },
    {
        "metaestimator": RFE,
        "estimator": "classifier",
        "estimator_name": "estimator",
        "X": X,
        "y": y,
        "estimator_routing_methods": ["fit", "predict", "score"],
    },
    {
        "metaestimator": RFECV,
        "estimator": "classifier",
        "estimator_name": "estimator",
        "estimator_routing_methods": ["fit"],
        "cv_name": "cv",
        "cv_routing_methods": ["fit"],
        "scorer_name": "scoring",
        "scorer_routing_methods": ["fit", "score"],
        "X": X,
        "y": y,
    },
]
"""List containing all metaestimators to be tested and their settings

The keys are as follows:

- metaestimator: The metaestimator to be tested
- estimator_name: The name of the argument for the sub-estimator
- estimator: The sub-estimator type, either "regressor" or "classifier"
- init_args: The arguments to be passed to the metaestimator's constructor
- X: X-data to fit and predict
- y: y-data to fit
- estimator_routing_methods: list of all methods to check for routing metadata
  to the sub-estimator
- preserves_metadata:
    - True (default): the metaestimator passes the metadata to the
      sub-estimator without modification. We check that the values recorded by
      the sub-estimator are identical to what we've passed to the
      metaestimator.
    - False: no check is performed regarding values, we only check that a
      metadata with the expected names/keys are passed.
    - "subset": we check that the recorded metadata by the sub-estimator is a
      subset of what is passed to the metaestimator.
- scorer_name: The name of the argument for the scorer
- scorer_routing_methods: list of all methods to check for routing metadata
  to the scorer
- cv_name: The name of the argument for the CV splitter
- cv_routing_methods: list of all methods to check for routing metadata
  to the splitter
- method_args: a dict of dicts, defining extra arguments needed to be passed to
  methods, such as passing `classes` to `partial_fit`.
- method_mapping: a dict of the form `{caller: [callee1, ...]}` which signals
  which `.set_{method}_request` methods should be called to set request values.
  If not present, a one-to-one mapping is assumed.
"""

# IDs used by pytest to get meaningful verbose messages when running the tests
METAESTIMATOR_IDS = [str(row["metaestimator"].__name__) for row in METAESTIMATORS]

UNSUPPORTED_ESTIMATORS = [
    AdaBoostClassifier(),
    AdaBoostRegressor(),
]


def get_init_args(metaestimator_info, sub_estimator_consumes):
    """Get the init args for a metaestimator

    This is a helper function to get the init args for a metaestimator from
    the METAESTIMATORS list. It returns an empty dict if no init args are
    required.

    Parameters
    ----------
    metaestimator_info : dict
        The metaestimator info from METAESTIMATORS

    sub_estimator_consumes : bool
        Whether the sub-estimator consumes metadata or not.

    Returns
    -------
    kwargs : dict
        The init args for the metaestimator.

    (estimator, estimator_registry) : (estimator, registry)
        The sub-estimator and the corresponding registry.

    (scorer, scorer_registry) : (scorer, registry)
        The scorer and the corresponding registry.

    (cv, cv_registry) : (CV splitter, registry)
        The CV splitter and the corresponding registry.
    """
    kwargs = metaestimator_info.get("init_args", {})
    estimator, estimator_registry = None, None
    scorer, scorer_registry = None, None
    cv, cv_registry = None, None
    if "estimator" in metaestimator_info:
        estimator_name = metaestimator_info["estimator_name"]
        estimator_registry = _Registry()
        sub_estimator_type = metaestimator_info["estimator"]
        if sub_estimator_consumes:
            if sub_estimator_type == "regressor":
                estimator = ConsumingRegressor(estimator_registry)
            elif sub_estimator_type == "classifier":
                estimator = ConsumingClassifier(estimator_registry)
            else:
                raise ValueError("Unpermitted `sub_estimator_type`.")  # pragma: nocover
        else:
            if sub_estimator_type == "regressor":
                estimator = NonConsumingRegressor()
            elif sub_estimator_type == "classifier":
                estimator = NonConsumingClassifier()
            else:
                raise ValueError("Unpermitted `sub_estimator_type`.")  # pragma: nocover
        kwargs[estimator_name] = estimator
    if "scorer_name" in metaestimator_info:
        scorer_name = metaestimator_info["scorer_name"]
        scorer_registry = _Registry()
        scorer = ConsumingScorer(registry=scorer_registry)
        kwargs[scorer_name] = scorer
    if "cv_name" in metaestimator_info:
        cv_name = metaestimator_info["cv_name"]
        cv_registry = _Registry()
        cv = ConsumingSplitter(registry=cv_registry)
        kwargs[cv_name] = cv

    return (
        kwargs,
        (estimator, estimator_registry),
        (scorer, scorer_registry),
        (cv, cv_registry),
    )


def set_requests(obj, *, method_mapping, methods, metadata_name, value=True):
    """Call `set_{method}_request` on a list of methods from the sub-estimator.

    Parameters
    ----------
    obj : BaseEstimator
        The object for which `set_{method}_request` methods are called.

    method_mapping : dict
        The method mapping in the form of `{caller: [callee, ...]}`.
        If a "caller" is not present in the method mapping, a one-to-one mapping is
        assumed.

    methods : list of str
        The list of methods as "caller"s for which the request for the child should
        be set.

    metadata_name : str
        The name of the metadata to be routed, usually either `"metadata"` or
        `"sample_weight"` in our tests.

    value : None, bool, or str
        The request value to be set, by default it's `True`
    """
    for caller in methods:
        for callee in method_mapping.get(caller, [caller]):
            set_request_for_method = getattr(obj, f"set_{callee}_request")
            set_request_for_method(**{metadata_name: value})
            if (
                isinstance(obj, BaseEstimator)
                and is_classifier(obj)
                and callee == "partial_fit"
            ):
                set_request_for_method(classes=True)


@pytest.mark.parametrize("estimator", UNSUPPORTED_ESTIMATORS)
@config_context(enable_metadata_routing=True)
def test_unsupported_estimators_get_metadata_routing(estimator):
    """Test that get_metadata_routing is not implemented on meta-estimators for
    which we haven't implemented routing yet."""
    with pytest.raises(NotImplementedError):
        estimator.get_metadata_routing()


@pytest.mark.parametrize("estimator", UNSUPPORTED_ESTIMATORS)
@config_context(enable_metadata_routing=True)
def test_unsupported_estimators_fit_with_metadata(estimator):
    """Test that fit raises NotImplementedError when metadata routing is
    enabled and a metadata is passed on meta-estimators for which we haven't
    implemented routing yet."""
    with pytest.raises(NotImplementedError):
        try:
            estimator.fit([[1]], [1], sample_weight=[1])
        except TypeError:
            # not all meta-estimators in the list support sample_weight,
            # and for those we skip this test.
            raise NotImplementedError


@config_context(enable_metadata_routing=True)
def test_registry_copy():
    # test that _Registry is not copied into a new instance.
    a = _Registry()
    b = _Registry()
    assert a is not b
    assert a is copy.copy(a)
    assert a is copy.deepcopy(a)


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_default_request(metaestimator):
    # Check that by default request is empty and the right type
    metaestimator_class = metaestimator["metaestimator"]
    kwargs, *_ = get_init_args(metaestimator, sub_estimator_consumes=True)
    instance = metaestimator_class(**kwargs)
    if "cv_name" in metaestimator:
        # Our GroupCV splitters request groups by default, which we should
        # ignore in this test.
        exclude = {"splitter": ["split"]}
    else:
        exclude = None
    assert_request_is_empty(instance.get_metadata_routing(), exclude=exclude)
    assert isinstance(instance.get_metadata_routing(), MetadataRouter)


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_error_on_missing_requests_for_sub_estimator(metaestimator):
    # Test that a UnsetMetadataPassedError is raised when the sub-estimator's
    # requests are not set
    if "estimator" not in metaestimator:
        # This test only makes sense for metaestimators which have a
        # sub-estimator, e.g. MyMetaEstimator(estimator=MySubEstimator())
        return

    metaestimator_class = metaestimator["metaestimator"]
    X = metaestimator["X"]
    y = metaestimator["y"]
    routing_methods = metaestimator["estimator_routing_methods"]

    for method_name in routing_methods:
        for key in ["sample_weight", "metadata"]:
            kwargs, (estimator, _), (scorer, _), *_ = get_init_args(
                metaestimator, sub_estimator_consumes=True
            )
            if scorer:
                scorer.set_score_request(**{key: True})
            val = {"sample_weight": sample_weight, "metadata": metadata}[key]
            method_kwargs = {key: val}
            instance = metaestimator_class(**kwargs)
            msg = (
                f"[{key}] are passed but are not explicitly set as requested or not"
                f" requested for {estimator.__class__.__name__}.{method_name}"
            )
            with pytest.raises(UnsetMetadataPassedError, match=re.escape(msg)):
                method = getattr(instance, method_name)
                if "fit" not in method_name:
                    # set request on fit
                    set_requests(
                        estimator,
                        method_mapping=metaestimator.get("method_mapping", {}),
                        methods=["fit"],
                        metadata_name=key,
                    )
                    instance.fit(X, y, **method_kwargs)
                # making sure the requests are unset, in case they were set as a
                # side effect of setting them for fit. For instance, if method
                # mapping for fit is: `"fit": ["fit", "score"]`, that would mean
                # calling `.score` here would not raise, because we have already
                # set request value for child estimator's `score`.
                set_requests(
                    estimator,
                    method_mapping=metaestimator.get("method_mapping", {}),
                    methods=["fit"],
                    metadata_name=key,
                    value=None,
                )
                try:
                    # `fit`, `partial_fit`, 'score' accept y, others don't.
                    method(X, y, **method_kwargs)
                except TypeError:
                    method(X, **method_kwargs)


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_setting_request_on_sub_estimator_removes_error(metaestimator):
    # When the metadata is explicitly requested on the sub-estimator, there
    # should be no errors.
    if "estimator" not in metaestimator:
        # This test only makes sense for metaestimators which have a
        # sub-estimator, e.g. MyMetaEstimator(estimator=MySubEstimator())
        return

    metaestimator_class = metaestimator["metaestimator"]
    X = metaestimator["X"]
    y = metaestimator["y"]
    routing_methods = metaestimator["estimator_routing_methods"]
    method_mapping = metaestimator.get("method_mapping", {})
    preserves_metadata = metaestimator.get("preserves_metadata", True)

    for method_name in routing_methods:
        for key in ["sample_weight", "metadata"]:
            val = {"sample_weight": sample_weight, "metadata": metadata}[key]
            method_kwargs = {key: val}

            kwargs, (estimator, registry), (scorer, _), (cv, _) = get_init_args(
                metaestimator, sub_estimator_consumes=True
            )
            if scorer:
                set_requests(
                    scorer, method_mapping={}, methods=["score"], metadata_name=key
                )
            if cv:
                cv.set_split_request(groups=True, metadata=True)

            # `set_{method}_request({metadata}==True)` on the underlying objects
            set_requests(
                estimator,
                method_mapping=method_mapping,
                methods=[method_name],
                metadata_name=key,
            )

            instance = metaestimator_class(**kwargs)
            method = getattr(instance, method_name)
            extra_method_args = metaestimator.get("method_args", {}).get(
                method_name, {}
            )
            if "fit" not in method_name:
                # fit before calling method
                instance.fit(X, y)
            try:
                # `fit` and `partial_fit` accept y, others don't.
                method(X, y, **method_kwargs, **extra_method_args)
            except TypeError:
                method(X, **method_kwargs, **extra_method_args)

            # sanity check that registry is not empty, or else the test passes
            # trivially
            assert registry
            split_params = (
                method_kwargs.keys() if preserves_metadata == "subset" else ()
            )
            for estimator in registry:
                check_recorded_metadata(
                    estimator,
                    method=method_name,
                    parent=method_name,
                    split_params=split_params,
                    **method_kwargs,
                )


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_non_consuming_estimator_works(metaestimator):
    # Test that when a non-consuming estimator is given, the meta-estimator
    # works w/o setting any requests.
    # Regression test for https://github.com/scikit-learn/scikit-learn/issues/28239
    if "estimator" not in metaestimator:
        # This test only makes sense for metaestimators which have a
        # sub-estimator, e.g. MyMetaEstimator(estimator=MySubEstimator())
        return

    def set_request(estimator, method_name):
        # e.g. call set_fit_request on estimator
        if is_classifier(estimator) and method_name == "partial_fit":
            estimator.set_partial_fit_request(classes=True)

    metaestimator_class = metaestimator["metaestimator"]
    X = metaestimator["X"]
    y = metaestimator["y"]
    routing_methods = metaestimator["estimator_routing_methods"]

    for method_name in routing_methods:
        kwargs, (estimator, _), (_, _), (_, _) = get_init_args(
            metaestimator, sub_estimator_consumes=False
        )
        instance = metaestimator_class(**kwargs)
        set_request(estimator, method_name)
        method = getattr(instance, method_name)
        extra_method_args = metaestimator.get("method_args", {}).get(method_name, {})
        if "fit" not in method_name:
            instance.fit(X, y, **extra_method_args)
        # The following should pass w/o raising a routing error.
        try:
            # `fit` and `partial_fit` accept y, others don't.
            method(X, y, **extra_method_args)
        except TypeError:
            method(X, **extra_method_args)


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_metadata_is_routed_correctly_to_scorer(metaestimator):
    """Test that any requested metadata is correctly routed to the underlying
    scorers in CV estimators.
    """
    if "scorer_name" not in metaestimator:
        # This test only makes sense for CV estimators
        return

    metaestimator_class = metaestimator["metaestimator"]
    routing_methods = metaestimator["scorer_routing_methods"]
    method_mapping = metaestimator.get("method_mapping", {})

    for method_name in routing_methods:
        kwargs, (estimator, _), (scorer, registry), (cv, _) = get_init_args(
            metaestimator, sub_estimator_consumes=True
        )
        scorer.set_score_request(sample_weight=True)
        if cv:
            cv.set_split_request(groups=True, metadata=True)
        if estimator is not None:
            set_requests(
                estimator,
                method_mapping=method_mapping,
                methods=[method_name],
                metadata_name="sample_weight",
            )
        instance = metaestimator_class(**kwargs)
        method = getattr(instance, method_name)
        method_kwargs = {"sample_weight": sample_weight}
        if "fit" not in method_name:
            instance.fit(X, y)
        method(X, y, **method_kwargs)

        assert registry
        for _scorer in registry:
            check_recorded_metadata(
                obj=_scorer,
                method="score",
                parent=method_name,
                split_params=("sample_weight",),
                **method_kwargs,
            )


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_metadata_is_routed_correctly_to_splitter(metaestimator):
    """Test that any requested metadata is correctly routed to the underlying
    splitters in CV estimators.
    """
    if "cv_routing_methods" not in metaestimator:
        # This test is only for metaestimators accepting a CV splitter
        return

    metaestimator_class = metaestimator["metaestimator"]
    routing_methods = metaestimator["cv_routing_methods"]
    X_ = metaestimator["X"]
    y_ = metaestimator["y"]

    for method_name in routing_methods:
        kwargs, (estimator, _), (scorer, _), (cv, registry) = get_init_args(
            metaestimator, sub_estimator_consumes=True
        )
        if estimator:
            estimator.set_fit_request(sample_weight=False, metadata=False)
        if scorer:
            scorer.set_score_request(sample_weight=False, metadata=False)
        cv.set_split_request(groups=True, metadata=True)
        instance = metaestimator_class(**kwargs)
        method_kwargs = {"groups": groups, "metadata": metadata}
        method = getattr(instance, method_name)
        method(X_, y_, **method_kwargs)
        assert registry
        for _splitter in registry:
            check_recorded_metadata(
                obj=_splitter, method="split", parent=method_name, **method_kwargs
            )


@pytest.mark.parametrize("metaestimator", METAESTIMATORS, ids=METAESTIMATOR_IDS)
@config_context(enable_metadata_routing=True)
def test_metadata_routed_to_group_splitter(metaestimator):
    """Test that groups are routed correctly if group splitter of CV estimator is used
    within cross_validate. Regression test for issue described in PR #29634 to test that
    `ValueError: The 'groups' parameter should not be None.` is not raised."""

    if "cv_routing_methods" not in metaestimator:
        # This test is only for metaestimators accepting a CV splitter
        return

    metaestimator_class = metaestimator["metaestimator"]
    X_ = metaestimator["X"]
    y_ = metaestimator["y"]

    kwargs, *_ = get_init_args(metaestimator, sub_estimator_consumes=True)
    # remove `ConsumingSplitter` from kwargs, so 'cv' param isn't passed twice:
    kwargs.pop("cv", None)
    instance = metaestimator_class(cv=GroupKFold(n_splits=2), **kwargs)
    cross_validate(
        instance,
        X_,
        y_,
        params={"groups": groups},
        cv=GroupKFold(n_splits=2),
        scoring=make_scorer(mean_squared_error, response_method="predict"),
    )