File: test_typedefs.py

package info (click to toggle)
scikit-learn 1.7.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,752 kB
  • sloc: python: 219,120; cpp: 5,790; ansic: 846; makefile: 191; javascript: 110
file content (25 lines) | stat: -rw-r--r-- 735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
import pytest

from sklearn.utils._typedefs import testing_make_array_from_typed_val


@pytest.mark.parametrize(
    "type_t, value, expected_dtype",
    [
        ("float64_t", 1.0, np.float64),
        ("float32_t", 1.0, np.float32),
        ("intp_t", 1, np.intp),
        ("int8_t", 1, np.int8),
        ("int32_t", 1, np.int32),
        ("int64_t", 1, np.int64),
        ("uint8_t", 1, np.uint8),
        ("uint32_t", 1, np.uint32),
        ("uint64_t", 1, np.uint64),
    ],
)
def test_types(type_t, value, expected_dtype):
    """Check that the types defined in _typedefs correspond to the expected
    numpy dtypes.
    """
    assert testing_make_array_from_typed_val[type_t](value).dtype == expected_dtype