1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\plots\partial-dependence-plot-2D.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_plots_partial-dependence-plot-2D.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_plots_partial-dependence-plot-2D.py:
===========================
Partial Dependence Plots 2D
===========================
Hvass-Labs Dec 2017
Holger Nahrstaedt 2020
.. currentmodule:: skopt
Simple example to show the new 2D plots.
.. GENERATED FROM PYTHON SOURCE LINES 13-27
.. code-block:: Python
print(__doc__)
from math import exp
import numpy as np
from skopt import gp_minimize
from skopt.plots import plot_histogram, plot_objective, plot_objective_2D
from skopt.space import Categorical, Integer, Real
from skopt.utils import point_asdict
np.random.seed(123)
import matplotlib.pyplot as plt
.. GENERATED FROM PYTHON SOURCE LINES 28-63
.. code-block:: Python
dim_learning_rate = Real(name='learning_rate', low=1e-6, high=1e-2, prior='log-uniform')
dim_num_dense_layers = Integer(name='num_dense_layers', low=1, high=5)
dim_num_dense_nodes = Integer(name='num_dense_nodes', low=5, high=512)
dim_activation = Categorical(name='activation', categories=['relu', 'sigmoid'])
dimensions = [
dim_learning_rate,
dim_num_dense_layers,
dim_num_dense_nodes,
dim_activation,
]
default_parameters = [1e-4, 1, 64, 'relu']
def model_fitness(x):
learning_rate, num_dense_layers, num_dense_nodes, activation = x
fitness = (
((exp(learning_rate) - 1.0) * 1000) ** 2
+ (num_dense_layers) ** 2
+ (num_dense_nodes / 100) ** 2
)
fitness *= 1.0 + 0.1 * np.random.rand()
if activation == 'sigmoid':
fitness += 10
return fitness
print(model_fitness(x=default_parameters))
.. rst-class:: sphx-glr-script-out
.. code-block:: none
1.518471835296799
.. GENERATED FROM PYTHON SOURCE LINES 64-76
.. code-block:: Python
search_result = gp_minimize(
func=model_fitness,
dimensions=dimensions,
n_calls=30,
x0=default_parameters,
random_state=123,
)
print(search_result.x)
print(search_result.fun)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
[4.929711467441911e-06, 1, 5, 'relu']
1.0201137671146678
.. GENERATED FROM PYTHON SOURCE LINES 77-81
.. code-block:: Python
for fitness, x in sorted(zip(search_result.func_vals, search_result.x_iters)):
print(fitness, x)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
1.0201137671146678 [4.929711467441911e-06, 1, 5, 'relu']
1.020825017708778 [5.447929143724181e-06, 1, 5, 'relu']
1.021667781479872 [0.0001144786138006685, 1, 5, 'relu']
1.0319553844579283 [3.2015950064095674e-06, 1, 5, 'relu']
1.0350021584165856 [9.697008005639565e-05, 1, 5, 'relu']
1.0387852240116218 [3.918631435807059e-06, 1, 5, 'relu']
1.0558125588274407 [4.826512273477327e-06, 1, 5, 'relu']
1.0626217337728787 [4.877033239311359e-06, 1, 23, 'relu']
1.065773703106011 [4.15423808784293e-06, 1, 5, 'relu']
1.0660997595359294 [1e-06, 1, 5, 'relu']
1.066913466503469 [0.0001026463063419168, 1, 5, 'relu']
1.0751293940451896 [1.6006592652941194e-06, 1, 5, 'relu']
1.087696030687253 [6.1092363610861856e-06, 1, 5, 'relu']
1.130168257786041 [0.0001280333478556736, 1, 19, 'relu']
1.1690663250744864 [0.00010510628632493199, 1, 33, 'relu']
1.4602213686635033 [0.0001, 1, 64, 'relu']
4.174922707059395 [0.00011226037475857404, 2, 5, 'relu']
14.337540595777632 [4.961649309025573e-06, 2, 44, 'sigmoid']
15.811122459303194 [5.768045960755954e-05, 1, 366, 'relu']
20.75714626376416 [4.6648726500116405e-05, 4, 195, 'relu']
20.83105097254721 [3.629134387669892e-06, 3, 323, 'relu']
25.045498550233685 [1.5528231282886148e-05, 3, 380, 'relu']
25.725698564025883 [0.0010034940899532338, 4, 264, 'relu']
26.808790139516606 [1e-06, 5, 5, 'relu']
28.093314338813517 [1e-06, 1, 512, 'relu']
31.67808942295837 [9.214584006695478e-05, 4, 213, 'sigmoid']
32.60979725349034 [0.0007109209001237586, 3, 355, 'sigmoid']
36.436844941374716 [9.52877578124997e-06, 4, 306, 'sigmoid']
108.24130894769868 [0.01, 1, 5, 'relu']
117.22558971730295 [0.008953258961145084, 4, 399, 'relu']
.. GENERATED FROM PYTHON SOURCE LINES 82-91
.. code-block:: Python
space = search_result.space
print(search_result.x_iters)
search_space = {name: space[name][1] for name in space.dimension_names}
print(point_asdict(search_space, default_parameters))
.. rst-class:: sphx-glr-script-out
.. code-block:: none
[[0.0001, 1, 64, 'relu'], [0.0007109209001237586, 3, 355, 'sigmoid'], [9.214584006695478e-05, 4, 213, 'sigmoid'], [3.629134387669892e-06, 3, 323, 'relu'], [9.52877578124997e-06, 4, 306, 'sigmoid'], [5.768045960755954e-05, 1, 366, 'relu'], [1.5528231282886148e-05, 3, 380, 'relu'], [4.6648726500116405e-05, 4, 195, 'relu'], [0.008953258961145084, 4, 399, 'relu'], [4.961649309025573e-06, 2, 44, 'sigmoid'], [0.0010034940899532338, 4, 264, 'relu'], [0.00010510628632493199, 1, 33, 'relu'], [0.0001144786138006685, 1, 5, 'relu'], [0.00011226037475857404, 2, 5, 'relu'], [0.0001280333478556736, 1, 19, 'relu'], [5.447929143724181e-06, 1, 5, 'relu'], [4.929711467441911e-06, 1, 5, 'relu'], [4.826512273477327e-06, 1, 5, 'relu'], [0.0001026463063419168, 1, 5, 'relu'], [1e-06, 1, 5, 'relu'], [6.1092363610861856e-06, 1, 5, 'relu'], [1.6006592652941194e-06, 1, 5, 'relu'], [0.01, 1, 5, 'relu'], [1e-06, 5, 5, 'relu'], [1e-06, 1, 512, 'relu'], [3.918631435807059e-06, 1, 5, 'relu'], [9.697008005639565e-05, 1, 5, 'relu'], [3.2015950064095674e-06, 1, 5, 'relu'], [4.15423808784293e-06, 1, 5, 'relu'], [4.877033239311359e-06, 1, 23, 'relu']]
OrderedDict([('activation', 0.0001), ('learning_rate', 1), ('num_dense_layers', 64), ('num_dense_nodes', 'relu')])
.. GENERATED FROM PYTHON SOURCE LINES 92-97
.. code-block:: Python
print("Plotting now ...")
_ = plot_histogram(result=search_result, dimension_identifier='learning_rate', bins=20)
plt.show()
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_001.png
:alt: partial dependence plot 2D
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_001.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
.. code-block:: none
Plotting now ...
.. GENERATED FROM PYTHON SOURCE LINES 98-105
.. code-block:: Python
_ = plot_objective_2D(
result=search_result,
dimension_identifier1='learning_rate',
dimension_identifier2='num_dense_nodes',
)
plt.show()
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_002.png
:alt: partial dependence plot 2D
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_002.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 106-114
.. code-block:: Python
_ = plot_objective_2D(
result=search_result,
dimension_identifier1='num_dense_layers',
dimension_identifier2='num_dense_nodes',
)
plt.show()
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_003.png
:alt: partial dependence plot 2D
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_003.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 115-120
.. code-block:: Python
_ = plot_objective(
result=search_result, plot_dims=['num_dense_layers', 'num_dense_nodes']
)
plt.show()
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_004.png
:alt: partial dependence plot 2D
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-2D_004.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (0 minutes 7.000 seconds)
.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot-2D.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/plots/partial-dependence-plot-2D.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: partial-dependence-plot-2D.ipynb <partial-dependence-plot-2D.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: partial-dependence-plot-2D.py <partial-dependence-plot-2D.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|