File: partial-dependence-plot-with-categorical.rst

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (270 lines) | stat: -rw-r--r-- 6,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\plots\partial-dependence-plot-with-categorical.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_plots_partial-dependence-plot-with-categorical.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plots_partial-dependence-plot-with-categorical.py:


=================================================
Partial Dependence Plots  with categorical values
=================================================

Sigurd Carlsen Feb 2019
Holger Nahrstaedt 2020

.. currentmodule:: skopt

Plot objective now supports optional use of partial dependence as well as
different methods of defining parameter values for dependency plots.

.. GENERATED FROM PYTHON SOURCE LINES 14-30

.. code-block:: Python


    print(__doc__)
    import numpy as np

    from skopt.plots import plot_objective

    np.random.seed(123)
    import numpy as np
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import cross_val_score
    from sklearn.tree import DecisionTreeClassifier

    from skopt import gp_minimize
    from skopt.plots import plot_objective
    from skopt.space import Categorical, Integer








.. GENERATED FROM PYTHON SOURCE LINES 31-34

objective function
==================
Here we define a function that we evaluate.

.. GENERATED FROM PYTHON SOURCE LINES 34-43

.. code-block:: Python



    def objective(params):
        clf = DecisionTreeClassifier(
            **{dim.name: val for dim, val in zip(SPACE, params) if dim.name != 'dummy'}
        )
        return -np.mean(cross_val_score(clf, *load_breast_cancer(return_X_y=True)))









.. GENERATED FROM PYTHON SOURCE LINES 44-46

Bayesian optimization
=====================

.. GENERATED FROM PYTHON SOURCE LINES 46-59

.. code-block:: Python


    SPACE = [
        Integer(1, 20, name='max_depth'),
        Integer(2, 100, name='min_samples_split'),
        Integer(5, 30, name='min_samples_leaf'),
        Integer(1, 30, name='max_features'),
        Categorical(list('abc'), name='dummy'),
        Categorical(['gini', 'entropy'], name='criterion'),
        Categorical(list('def'), name='dummy'),
    ]

    result = gp_minimize(objective, SPACE, n_calls=20)








.. GENERATED FROM PYTHON SOURCE LINES 60-67

Partial dependence plot
=======================

Here we see an example of using partial dependence. Even when setting
n_points all the way down to 10 from the default of 40, this method is
still very slow. This is because partial dependence calculates 250 extra
predictions for each point on the plots.

.. GENERATED FROM PYTHON SOURCE LINES 67-70

.. code-block:: Python


    _ = plot_objective(result, n_points=10)




.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_001.png
   :alt: partial dependence plot with categorical
   :srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 71-77

Plot without partial dependence
===============================
Here we plot without partial dependence. We see that it is a lot faster.
Also the values for the other parameters are set to the default "result"
which is the parameter set of the best observed value so far. In the case
of funny_func this is close to 0 for all parameters.

.. GENERATED FROM PYTHON SOURCE LINES 77-80

.. code-block:: Python


    _ = plot_objective(result, sample_source='result', n_points=10)




.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_002.png
   :alt: partial dependence plot with categorical
   :srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_002.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 81-89

Modify the shown minimum
========================
Here we try with setting the other parameters to something other than
"result". When dealing with categorical dimensions we can't use
'expected_minimum'. Therefore we try with "expected_minimum_random"
which is a naive way of finding the minimum of the surrogate by only
using random sampling. `n_minimum_search` sets the number of random samples,
which is used to find the minimum

.. GENERATED FROM PYTHON SOURCE LINES 89-98

.. code-block:: Python


    _ = plot_objective(
        result,
        n_points=10,
        sample_source='expected_minimum_random',
        minimum='expected_minimum_random',
        n_minimum_search=10000,
    )




.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_003.png
   :alt: partial dependence plot with categorical
   :srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_003.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 99-103

Set a minimum location
======================
Lastly we can also define these parameters ourselfs by
parsing a list as the pars argument:

.. GENERATED FROM PYTHON SOURCE LINES 103-110

.. code-block:: Python


    _ = plot_objective(
        result,
        n_points=10,
        sample_source=[15, 4, 7, 15, 'b', 'entropy', 'e'],
        minimum=[15, 4, 7, 15, 'b', 'entropy', 'e'],
    )



.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_004.png
   :alt: partial dependence plot with categorical
   :srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot-with-categorical_004.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 8.190 seconds)


.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot-with-categorical.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/plots/partial-dependence-plot-with-categorical.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: partial-dependence-plot-with-categorical.ipynb <partial-dependence-plot-with-categorical.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: partial-dependence-plot-with-categorical.py <partial-dependence-plot-with-categorical.py>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_