1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\plots\partial-dependence-plot.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_plots_partial-dependence-plot.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_plots_partial-dependence-plot.py:
========================
Partial Dependence Plots
========================
Sigurd Carlsen Feb 2019
Holger Nahrstaedt 2020
.. currentmodule:: skopt
Plot objective now supports optional use of partial dependence as well as
different methods of defining parameter values for dependency plots.
.. GENERATED FROM PYTHON SOURCE LINES 14-23
.. code-block:: Python
print(__doc__)
import numpy as np
from skopt import forest_minimize
from skopt.plots import plot_objective
np.random.seed(123)
.. GENERATED FROM PYTHON SOURCE LINES 24-28
Objective function
==================
Plot objective now supports optional use of partial dependence as well as
different methods of defining parameter values for dependency plots
.. GENERATED FROM PYTHON SOURCE LINES 28-38
.. code-block:: Python
# Here we define a function that we evaluate.
def funny_func(x):
s = 0
for i in range(len(x)):
s += (x[i] * i) ** 2
return s
.. GENERATED FROM PYTHON SOURCE LINES 39-42
Optimisation using decision trees
=================================
We run forest_minimize on the function
.. GENERATED FROM PYTHON SOURCE LINES 42-51
.. code-block:: Python
bounds = [
(-1, 1.0),
] * 3
n_calls = 50
result = forest_minimize(
funny_func, bounds, n_calls=n_calls, base_estimator="ET", random_state=4
)
.. GENERATED FROM PYTHON SOURCE LINES 52-58
Partial dependence plot
=======================
Here we see an example of using partial dependence. Even when setting
n_points all the way down to 10 from the default of 40, this method is
still very slow. This is because partial dependence calculates 250 extra
predictions for each point on the plots.
.. GENERATED FROM PYTHON SOURCE LINES 58-62
.. code-block:: Python
_ = plot_objective(result, n_points=10)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_001.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_001.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 63-67
It is possible to change the location of the red dot, which normally shows
the position of the found minimum. We can set it 'expected_minimum',
which is the minimum value of the surrogate function, obtained by a
minimum search method.
.. GENERATED FROM PYTHON SOURCE LINES 67-69
.. code-block:: Python
_ = plot_objective(result, n_points=10, minimum='expected_minimum')
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_002.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_002.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 70-76
Plot without partial dependence
===============================
Here we plot without partial dependence. We see that it is a lot faster.
Also the values for the other parameters are set to the default "result"
which is the parameter set of the best observed value so far. In the case
of funny_func this is close to 0 for all parameters.
.. GENERATED FROM PYTHON SOURCE LINES 76-79
.. code-block:: Python
_ = plot_objective(result, sample_source='result', n_points=10)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_003.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_003.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 80-86
Modify the shown minimum
========================
Here we try with setting the `minimum` parameters to something other than
"result". First we try with "expected_minimum" which is the set of
parameters that gives the miniumum value of the surrogate function,
using scipys minimum search method.
.. GENERATED FROM PYTHON SOURCE LINES 86-91
.. code-block:: Python
_ = plot_objective(
result, n_points=10, sample_source='expected_minimum', minimum='expected_minimum'
)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_004.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_004.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 92-94
"expected_minimum_random" is a naive way of finding the minimum of the
surrogate by only using random sampling:
.. GENERATED FROM PYTHON SOURCE LINES 94-102
.. code-block:: Python
_ = plot_objective(
result,
n_points=10,
sample_source='expected_minimum_random',
minimum='expected_minimum_random',
)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_005.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_005.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 103-106
We can also specify how many initial samples are used for the two different
"expected_minimum" methods. We set it to a low value in the next examples
to showcase how it affects the minimum for the two methods.
.. GENERATED FROM PYTHON SOURCE LINES 106-115
.. code-block:: Python
_ = plot_objective(
result,
n_points=10,
sample_source='expected_minimum_random',
minimum='expected_minimum_random',
n_minimum_search=10,
)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_006.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_006.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 116-125
.. code-block:: Python
_ = plot_objective(
result,
n_points=10,
sample_source="expected_minimum",
minimum='expected_minimum',
n_minimum_search=2,
)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_007.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_007.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 126-130
Set a minimum location
======================
Lastly we can also define these parameters ourself by parsing a list
as the minimum argument:
.. GENERATED FROM PYTHON SOURCE LINES 130-134
.. code-block:: Python
_ = plot_objective(
result, n_points=10, sample_source=[1, -0.5, 0.5], minimum=[1, -0.5, 0.5]
)
.. image-sg:: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_008.png
:alt: partial dependence plot
:srcset: /auto_examples/plots/images/sphx_glr_partial-dependence-plot_008.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (0 minutes 14.903 seconds)
.. _sphx_glr_download_auto_examples_plots_partial-dependence-plot.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/plots/partial-dependence-plot.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: partial-dependence-plot.ipynb <partial-dependence-plot.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: partial-dependence-plot.py <partial-dependence-plot.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|