1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\plots\visualizing-results.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_plots_visualizing-results.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_plots_visualizing-results.py:
================================
Visualizing optimization results
================================
Tim Head, August 2016.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Bayesian optimization or sequential model-based optimization uses a surrogate
model to model the expensive to evaluate objective function `func`. It is
this model that is used to determine at which points to evaluate the expensive
objective next.
To help understand why the optimization process is proceeding the way it is,
it is useful to plot the location and order of the points at which the
objective is evaluated. If everything is working as expected, early samples
will be spread over the whole parameter space and later samples should
cluster around the minimum.
The :class:`plots.plot_evaluations` function helps with visualizing the location and
order in which samples are evaluated for objectives with an arbitrary
number of dimensions.
The :class:`plots.plot_objective` function plots the partial dependence of the objective,
as represented by the surrogate model, for each dimension and as pairs of the
input dimensions.
All of the minimizers implemented in `skopt` return an [`OptimizeResult`]()
instance that can be inspected. Both :class:`plots.plot_evaluations` and :class:`plots.plot_objective`
are helpers that do just that
.. GENERATED FROM PYTHON SOURCE LINES 34-45
.. code-block:: Python
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
from skopt.benchmarks import branin as branin
from skopt.benchmarks import hart6 as hart6_
.. GENERATED FROM PYTHON SOURCE LINES 46-58
Toy models
==========
We will use two different toy models to demonstrate how :class:`plots.plot_evaluations`
works.
The first model is the :class:`benchmarks.branin` function which has two dimensions and three
minima.
The second model is the `hart6` function which has six dimension which makes
it hard to visualize. This will show off the utility of
:class:`plots.plot_evaluations`.
.. GENERATED FROM PYTHON SOURCE LINES 58-65
.. code-block:: Python
# redefined `hart6` to allow adding arbitrary "noise" dimensions
def hart6(x):
return hart6_(x[:6])
.. GENERATED FROM PYTHON SOURCE LINES 66-71
Starting with `branin`
======================
To start let's take advantage of the fact that :class:`benchmarks.branin` is a simple
function which can be visualised in two dimensions.
.. GENERATED FROM PYTHON SOURCE LINES 71-104
.. code-block:: Python
from matplotlib.colors import LogNorm
def plot_branin():
fig, ax = plt.subplots()
x1_values = np.linspace(-5, 10, 100)
x2_values = np.linspace(0, 15, 100)
x_ax, y_ax = np.meshgrid(x1_values, x2_values)
vals = np.c_[x_ax.ravel(), y_ax.ravel()]
fx = np.reshape([branin(val) for val in vals], (100, 100))
cm = ax.pcolormesh(
x_ax, y_ax, fx, norm=LogNorm(vmin=fx.min(), vmax=fx.max()), cmap='viridis_r'
)
minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14, lw=0, label="Minima")
cb = fig.colorbar(cm)
cb.set_label("f(x)")
ax.legend(loc="best", numpoints=1)
ax.set_xlabel("$X_0$")
ax.set_xlim([-5, 10])
ax.set_ylabel("$X_1$")
ax.set_ylim([0, 15])
plot_branin()
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_001.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_001.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 105-111
Evaluating the objective function
=================================
Next we use an extra trees based minimizer to find one of the minima of the
:class:`benchmarks.branin` function. Then we visualize at which points the objective is being
evaluated using :class:`plots.plot_evaluations`.
.. GENERATED FROM PYTHON SOURCE LINES 111-125
.. code-block:: Python
from skopt import dummy_minimize, forest_minimize
from skopt.plots import plot_evaluations
bounds = [(-5.0, 10.0), (0.0, 15.0)]
n_calls = 20
n_jobs = -1
forest_res = forest_minimize(
branin, bounds, n_calls=n_calls, n_jobs=n_jobs, base_estimator="ET", random_state=4
)
_ = plot_evaluations(forest_res, bins=10)
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_002.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_002.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 126-161
:class:`plots.plot_evaluations` creates a grid of size `n_dims` by `n_dims`.
The diagonal shows histograms for each of the dimensions. In the lower
triangle (just one plot in this case) a two dimensional scatter plot of all
points is shown. The order in which points were evaluated is encoded in the
color of each point. Darker/purple colors correspond to earlier samples and
lighter/yellow colors correspond to later samples. A red point shows the
location of the minimum found by the optimization process.
You should be able to see that points start clustering around the location
of the true miminum. The histograms show that the objective is evaluated
more often at locations near to one of the three minima.
Using :class:`plots.plot_objective` we can visualise the one dimensional partial
dependence of the surrogate model for each dimension. The contour plot in
the bottom left corner shows the two dimensional partial dependence. In this
case this is the same as simply plotting the objective as it only has two
dimensions.
Partial dependence plots
------------------------
Partial dependence plots were proposed by
`Friedman (2001)`_
as a method for interpreting the importance of input features used in
gradient boosting machines. Given a function of :math:`k`: variables
:math:`y=f\left(x_1, x_2, ..., x_k\right)`: the
partial dependence of $f$ on the $i$-th variable $x_i$ is calculated as:
:math:`\phi\left( x_i \right) = \frac{1}{N} \sum^N_{j=0}f\left(x_{1,j}, x_{2,j}, ..., x_i, ..., x_{k,j}\right)`:
with the sum running over a set of $N$ points drawn at random from the
search space.
The idea is to visualize how the value of :math:`x_j`: influences the function
:math:`f`: after averaging out the influence of all other variables.
.. _Friedman (2001): https://dx.doi.org/10.1214/aos/1013203451
.. GENERATED FROM PYTHON SOURCE LINES 161-166
.. code-block:: Python
from skopt.plots import plot_objective
_ = plot_objective(forest_res, n_samples=10, n_points=10)
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_003.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_003.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 167-180
The two dimensional partial dependence plot can look like the true
objective but it does not have to. As points at which the objective function
is being evaluated are concentrated around the suspected minimum the
surrogate model sometimes is not a good representation of the objective far
away from the minima.
Random sampling
===============
Compare this to a minimizer which picks points at random. There is no
structure visible in the order in which it evaluates the objective. Because
there is no model involved in the process of picking sample points at
random, we can not plot the partial dependence of the model.
.. GENERATED FROM PYTHON SOURCE LINES 180-185
.. code-block:: Python
dummy_res = dummy_minimize(branin, bounds, n_calls=n_calls, random_state=4)
_ = plot_evaluations(dummy_res, bins=10)
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_004.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_004.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 186-196
Working in six dimensions
=========================
Visualising what happens in two dimensions is easy, where
:class:`plots.plot_evaluations` and :class:`plots.plot_objective` start to be useful is when the
number of dimensions grows. They take care of many of the more mundane
things needed to make good plots of all combinations of the dimensions.
The next example uses class:`benchmarks.hart6` which has six dimensions and shows both
:class:`plots.plot_evaluations` and :class:`plots.plot_objective`.
.. GENERATED FROM PYTHON SOURCE LINES 196-205
.. code-block:: Python
bounds = [
(0.0, 1.0)
] * 6
forest_res = forest_minimize(
hart6, bounds, n_calls=n_calls, n_jobs=n_jobs, base_estimator="ET", random_state=4
)
.. GENERATED FROM PYTHON SOURCE LINES 206-210
.. code-block:: Python
_ = plot_evaluations(forest_res)
_ = plot_objective(forest_res, n_samples=10, n_points=10)
.. rst-class:: sphx-glr-horizontal
*
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_005.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_005.png
:class: sphx-glr-multi-img
*
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_006.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_006.png
:class: sphx-glr-multi-img
.. GENERATED FROM PYTHON SOURCE LINES 211-218
Going from 6 to 6+2 dimensions
==============================
To make things more interesting let's add two dimension to the problem.
As :class:`benchmarks.hart6` only depends on six dimensions we know that for this problem
the new dimensions will be "flat" or uninformative. This is clearly visible
in both the placement of samples and the partial dependence plots.
.. GENERATED FROM PYTHON SOURCE LINES 218-228
.. code-block:: Python
bounds = [(0., 1.)] * 8
forest_res = forest_minimize(
hart6, bounds, n_calls=n_calls, n_jobs=n_jobs, base_estimator="ET", random_state=4
)
_ = plot_evaluations(forest_res)
_ = plot_objective(forest_res, n_samples=10, n_points=10)
.. rst-class:: sphx-glr-horizontal
*
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_007.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_007.png
:class: sphx-glr-multi-img
*
.. image-sg:: /auto_examples/plots/images/sphx_glr_visualizing-results_008.png
:alt: visualizing results
:srcset: /auto_examples/plots/images/sphx_glr_visualizing-results_008.png
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (1 minutes 18.777 seconds)
.. _sphx_glr_download_auto_examples_plots_visualizing-results.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/plots/visualizing-results.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: visualizing-results.ipynb <visualizing-results.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: visualizing-results.py <visualizing-results.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|