1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
"""
===================================================
Comparing initial sampling methods on integer space
===================================================
Holger Nahrstaedt 2020 Sigurd Carlsen October 2019
.. currentmodule:: skopt
When doing baysian optimization we often want to reserve some of the
early part of the optimization to pure exploration. By default the
optimizer suggests purely random samples for the first n_initial_points
(10 by default). The downside to this is that there is no guarantee that
these samples are spread out evenly across all the dimensions.
Sampling methods as Latin hypercube, Sobol', Halton and Hammersly
take advantage of the fact that we know beforehand how many random
points we want to sample. Then these points can be "spread out" in
such a way that each dimension is explored.
See also the example on a real space
:ref:`sphx_glr_auto_examples_initial_sampling_method.py`
"""
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist
from skopt.sampler import Grid, Halton, Hammersly, Lhs, Sobol
from skopt.space import Space
#############################################################################
def plot_searchspace(x, title):
fig, ax = plt.subplots()
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bs', markersize=40, alpha=0.5)
# ax.legend(loc="best", numpoints=1)
ax.set_xlabel("X1")
ax.set_xlim([0, 5])
ax.set_ylabel("X2")
ax.set_ylim([0, 5])
plt.title(title)
ax.grid(True)
n_samples = 10
space = Space([(0, 5), (0, 5)])
#############################################################################
# Random sampling
# ---------------
x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("random")
#############################################################################
# Sobol'
# ------
sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, "Sobol'")
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("sobol'")
#############################################################################
# Classic latin hypercube sampling
# --------------------------------
lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
#############################################################################
# Centered latin hypercube sampling
# ---------------------------------
lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("center")
#############################################################################
# Maximin optimized hypercube sampling
# ------------------------------------
lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
#############################################################################
# Correlation optimized hypercube sampling
# ----------------------------------------
lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
#############################################################################
# Ratio optimized hypercube sampling
# ----------------------------------
lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
#############################################################################
# Halton sampling
# ---------------
halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
#############################################################################
# Hammersly sampling
# ------------------
hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
#############################################################################
# Grid sampling
# -------------
grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
#############################################################################
# Pdist boxplot of all methods
# ----------------------------
#
# This boxplot shows the distance between all generated points using
# Euclidian distance. The higher the value, the better the sampling method.
# It can be seen that random has the worst performance
fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 6)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)
|