1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\sampler\initial-sampling-method.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_sampler_initial-sampling-method.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_sampler_initial-sampling-method.py:
==================================
Comparing initial sampling methods
==================================
Holger Nahrstaedt 2020 Sigurd Carlsen October 2019
.. currentmodule:: skopt
When doing baysian optimization we often want to reserve some of the
early part of the optimization to pure exploration. By default the
optimizer suggests purely random samples for the first n_initial_points
(10 by default). The downside to this is that there is no guarantee that
these samples are spread out evenly across all the dimensions.
Sampling methods as Latin hypercube, Sobol', Halton and Hammersly
take advantage of the fact that we know beforehand how many random
points we want to sample. Then these points can be "spread out" in
such a way that each dimension is explored.
See also the example on an integer space
:ref:`sphx_glr_auto_examples_initial_sampling_method_integer.py`
.. GENERATED FROM PYTHON SOURCE LINES 25-36
.. code-block:: Python
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist
from skopt.sampler import Grid, Halton, Hammersly, Lhs, Sobol
from skopt.space import Space
.. GENERATED FROM PYTHON SOURCE LINES 37-56
.. code-block:: Python
def plot_searchspace(x, title):
fig, ax = plt.subplots()
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', markersize=80, alpha=0.5)
# ax.legend(loc="best", numpoints=1)
ax.set_xlabel("X1")
ax.set_xlim([-5, 10])
ax.set_ylabel("X2")
ax.set_ylim([0, 15])
plt.title(title)
n_samples = 10
space = Space([(-5.0, 10.0), (0.0, 15.0)])
# space.set_transformer("normalize")
.. GENERATED FROM PYTHON SOURCE LINES 57-59
Random sampling
---------------
.. GENERATED FROM PYTHON SOURCE LINES 59-66
.. code-block:: Python
x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
pdist_data.append(pdist(x).flatten())
x_label.append("random")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_001.png
:alt: Random samples
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_001.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 67-69
Sobol'
------
.. GENERATED FROM PYTHON SOURCE LINES 69-76
.. code-block:: Python
sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, "Sobol'")
pdist_data.append(pdist(x).flatten())
x_label.append("sobol'")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_002.png
:alt: Sobol'
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_002.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
.. code-block:: none
D:\git\scikit-optimize\skopt\sampler\sobol.py:521: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+10=10.
warnings.warn(
.. GENERATED FROM PYTHON SOURCE LINES 77-79
Classic Latin hypercube sampling
--------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 79-86
.. code-block:: Python
lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_003.png
:alt: classic LHS
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_003.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 87-89
Centered Latin hypercube sampling
---------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 89-96
.. code-block:: Python
lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("center")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_004.png
:alt: centered LHS
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_004.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 97-99
Maximin optimized hypercube sampling
------------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 99-106
.. code-block:: Python
lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_005.png
:alt: maximin LHS
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_005.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 107-109
Correlation optimized hypercube sampling
----------------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 109-116
.. code-block:: Python
lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_006.png
:alt: correlation LHS
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_006.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 117-119
Ratio optimized hypercube sampling
----------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 119-126
.. code-block:: Python
lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_007.png
:alt: ratio LHS
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_007.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 127-129
Halton sampling
---------------
.. GENERATED FROM PYTHON SOURCE LINES 129-136
.. code-block:: Python
halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_008.png
:alt: Halton
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_008.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 137-139
Hammersly sampling
------------------
.. GENERATED FROM PYTHON SOURCE LINES 139-146
.. code-block:: Python
hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_009.png
:alt: Hammersly
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_009.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 147-149
Grid sampling
-------------
.. GENERATED FROM PYTHON SOURCE LINES 149-156
.. code-block:: Python
grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_010.png
:alt: Grid
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_010.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 157-163
Pdist boxplot of all methods
----------------------------
This boxplot shows the distance between all generated points using
Euclidian distance. The higher the value, the better the sampling method.
It can be seen that random has the worst performance
.. GENERATED FROM PYTHON SOURCE LINES 163-170
.. code-block:: Python
fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 12)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)
.. image-sg:: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_011.png
:alt: initial sampling method
:srcset: /auto_examples/sampler/images/sphx_glr_initial-sampling-method_011.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (0 minutes 5.517 seconds)
.. _sphx_glr_download_auto_examples_sampler_initial-sampling-method.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/sampler/initial-sampling-method.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: initial-sampling-method.ipynb <initial-sampling-method.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: initial-sampling-method.py <initial-sampling-method.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|