File: sampling_comparison.rst

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (399 lines) | stat: -rw-r--r-- 10,097 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\sampler\sampling_comparison.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_sampler_sampling_comparison.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_sampler_sampling_comparison.py:


==========================================
Comparing initial point generation methods
==========================================

Holger Nahrstaedt 2020

.. currentmodule:: skopt

Bayesian optimization or sequential model-based optimization uses a surrogate
model to model the expensive to evaluate function `func`. There are several
choices for what kind of surrogate model to use. This notebook compares the
performance of:

* Halton sequence,
* Hammersly sequence,
* Sobol' sequence and
* Latin hypercube sampling

as initial points. The purely random point generation is used as
a baseline.

.. GENERATED FROM PYTHON SOURCE LINES 23-32

.. code-block:: Python


    print(__doc__)
    import numpy as np

    np.random.seed(123)
    import matplotlib.pyplot as plt

    from skopt.benchmarks import hart6 as hart6_








.. GENERATED FROM PYTHON SOURCE LINES 33-39

Toy model
=========

We will use the :class:`benchmarks.hart6` function as toy model for the expensive function.
In a real world application this function would be unknown and expensive
to evaluate.

.. GENERATED FROM PYTHON SOURCE LINES 39-53

.. code-block:: Python



    # redefined `hart6` to allow adding arbitrary "noise" dimensions
    def hart6(x, noise_level=0.0):
        return hart6_(x[:6]) + noise_level * np.random.randn()


    from skopt.benchmarks import branin as _branin


    def branin(x, noise_level=0.0):
        return _branin(x) + noise_level * np.random.randn()









.. GENERATED FROM PYTHON SOURCE LINES 54-118

.. code-block:: Python


    import time

    from matplotlib.pyplot import cm

    from skopt import gp_minimize


    def plot_convergence(
        result_list, true_minimum=None, yscale=None, title="Convergence plot"
    ):

        ax = plt.gca()
        ax.set_title(title)
        ax.set_xlabel("Number of calls $n$")
        ax.set_ylabel(r"$\min f(x)$ after $n$ calls")
        ax.grid()
        if yscale is not None:
            ax.set_yscale(yscale)
        colors = cm.hsv(np.linspace(0.25, 1.0, len(result_list)))

        for results, color in zip(result_list, colors):
            name, results = results
            n_calls = len(results[0].x_iters)
            iterations = range(1, n_calls + 1)
            mins = [[np.min(r.func_vals[:i]) for i in iterations] for r in results]
            ax.plot(iterations, np.mean(mins, axis=0), c=color, label=name)
            # ax.errorbar(iterations, np.mean(mins, axis=0),
            #             yerr=np.std(mins, axis=0), c=color, label=name)
        if true_minimum:
            ax.axhline(true_minimum, linestyle="--", color="r", lw=1, label="True minimum")
        ax.legend(loc="best")
        return ax


    def run(minimizer, initial_point_generator, n_initial_points=10, n_repeats=1):
        return [
            minimizer(
                func,
                bounds,
                n_initial_points=n_initial_points,
                initial_point_generator=initial_point_generator,
                n_calls=n_calls,
                random_state=n,
            )
            for n in range(n_repeats)
        ]


    def run_measure(initial_point_generator, n_initial_points=10):
        start = time.time()
        # n_repeats must set to a much higher value to obtain meaningful results.
        n_repeats = 1
        res = run(
            gp_minimize,
            initial_point_generator,
            n_initial_points=n_initial_points,
            n_repeats=n_repeats,
        )
        duration = time.time() - start
        print("%s: %.2f s" % (initial_point_generator, duration))
        return res









.. GENERATED FROM PYTHON SOURCE LINES 119-130

Objective
=========

The objective of this example is to find one of these minima in as
few iterations as possible. One iteration is defined as one call
to the :class:`benchmarks.hart6` function.

We will evaluate each model several times using a different seed for the
random number generator. Then compare the average performance of these
models. This makes the comparison more robust against models that get
"lucky".

.. GENERATED FROM PYTHON SOURCE LINES 130-154

.. code-block:: Python


    from functools import partial

    example = "hart6"

    if example == "hart6":
        func = partial(hart6, noise_level=0.1)
        bounds = [
            (0.0, 1.0),
        ] * 6
        true_minimum = -3.32237
        n_calls = 30
        n_initial_points = 10
        yscale = None
        title = "Convergence plot - hart6"
    else:
        func = partial(branin, noise_level=2.0)
        bounds = [(-5.0, 10.0), (0.0, 15.0)]
        true_minimum = 0.397887
        n_calls = 30
        n_initial_points = 10
        yscale = "log"
        title = "Convergence plot - branin"








.. GENERATED FROM PYTHON SOURCE LINES 155-169

.. code-block:: Python

    from skopt.utils import cook_initial_point_generator

    # Random search
    dummy_res = run_measure("random", n_initial_points)
    lhs = cook_initial_point_generator("lhs", lhs_type="classic", criterion=None)
    lhs_res = run_measure(lhs, n_initial_points)
    lhs2 = cook_initial_point_generator("lhs", criterion="maximin")
    lhs2_res = run_measure(lhs2, n_initial_points)
    sobol = cook_initial_point_generator("sobol", randomize=False, min_skip=1, max_skip=100)
    sobol_res = run_measure(sobol, n_initial_points)
    halton_res = run_measure("halton", n_initial_points)
    hammersly_res = run_measure("hammersly", n_initial_points)
    grid_res = run_measure("grid", n_initial_points)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    random: 11.50 s
    <skopt.sampler.lhs.Lhs object at 0x0000020BCFA298D0>: 10.31 s
    <skopt.sampler.lhs.Lhs object at 0x0000020BCF824250>: 10.83 s
    D:\git\scikit-optimize\skopt\sampler\sobol.py:521: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+10=10. 
      warnings.warn(
    <skopt.sampler.sobol.Sobol object at 0x0000020BCFAF0210>: 8.19 s
    halton: 5.61 s
    hammersly: 6.14 s
    grid: 11.66 s




.. GENERATED FROM PYTHON SOURCE LINES 170-171

Note that this can take a few minutes.

.. GENERATED FROM PYTHON SOURCE LINES 171-189

.. code-block:: Python


    plot = plot_convergence(
        [
            ("random", dummy_res),
            ("lhs", lhs_res),
            ("lhs_maximin", lhs2_res),
            ("sobol'", sobol_res),
            ("halton", halton_res),
            ("hammersly", hammersly_res),
            ("grid", grid_res),
        ],
        true_minimum=true_minimum,
        yscale=yscale,
        title=title,
    )

    plt.show()




.. image-sg:: /auto_examples/sampler/images/sphx_glr_sampling_comparison_001.png
   :alt: Convergence plot - hart6
   :srcset: /auto_examples/sampler/images/sphx_glr_sampling_comparison_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 190-194

This plot shows the value of the minimum found (y axis) as a function
of the number of iterations performed so far (x axis). The dashed red line
indicates the true value of the minimum of the :class:`benchmarks.hart6`
function.

.. GENERATED FROM PYTHON SOURCE LINES 196-197

Test with different n_random_starts values

.. GENERATED FROM PYTHON SOURCE LINES 197-202

.. code-block:: Python

    lhs2 = cook_initial_point_generator("lhs", criterion="maximin")
    lhs2_15_res = run_measure(lhs2, 12)
    lhs2_20_res = run_measure(lhs2, 14)
    lhs2_25_res = run_measure(lhs2, 16)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    <skopt.sampler.lhs.Lhs object at 0x0000020BD8E162D0>: 5.83 s
    <skopt.sampler.lhs.Lhs object at 0x0000020BD8E162D0>: 5.66 s
    <skopt.sampler.lhs.Lhs object at 0x0000020BD8E162D0>: 4.54 s




.. GENERATED FROM PYTHON SOURCE LINES 203-204

n_random_starts = 10 produces the best results

.. GENERATED FROM PYTHON SOURCE LINES 204-219

.. code-block:: Python


    plot = plot_convergence(
        [
            ("random - 10", dummy_res),
            ("lhs_maximin - 10", lhs2_res),
            ("lhs_maximin - 12", lhs2_15_res),
            ("lhs_maximin - 14", lhs2_20_res),
            ("lhs_maximin - 16", lhs2_25_res),
        ],
        true_minimum=true_minimum,
        yscale=yscale,
        title=title,
    )

    plt.show()



.. image-sg:: /auto_examples/sampler/images/sphx_glr_sampling_comparison_002.png
   :alt: Convergence plot - hart6
   :srcset: /auto_examples/sampler/images/sphx_glr_sampling_comparison_002.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (1 minutes 20.489 seconds)


.. _sphx_glr_download_auto_examples_sampler_sampling_comparison.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/sampler/sampling_comparison.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: sampling_comparison.ipynb <sampling_comparison.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: sampling_comparison.py <sampling_comparison.py>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_