File: sklearn-gridsearchcv-replacement.rst

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (814 lines) | stat: -rw-r--r-- 26,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\sklearn-gridsearchcv-replacement.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_sklearn-gridsearchcv-replacement.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_sklearn-gridsearchcv-replacement.py:


==========================================
Scikit-learn hyperparameter search wrapper
==========================================

Iaroslav Shcherbatyi, Tim Head and Gilles Louppe. June 2017.
Reformatted by Holger Nahrstaedt 2020

.. currentmodule:: skopt

Introduction
============

This example assumes basic familiarity with
`scikit-learn <http://scikit-learn.org/stable/index.html>`_.

Search for parameters of machine learning models that results in best
cross-validation performance is necessary in almost all practical
cases to get a model with best generalization estimate.
A standard approach in scikit-learn is to use
:obj:`sklearn.model_selection.GridSearchCV` class, which enumerates
all combinations of hyperparameters values given as input.
This search complexity grows exponentially with the number of parameters.
A more scalable approach is to use
:obj:`sklearn.model_selection.RandomizedSearchCV`, which however does not
take advantage of the structure of a search space.
Scikit-optimize provides a drop-in replacement for these two scikit-learn
methods. The hyperparameter search is achieved by Bayesian Optimization
At each step of the optimization, a surrogate model infers the objective
function using observed evluation results as priors. An acquisition function
utilizes these predictions to navigate between exploration (sampling
unexplored areas) and exploitation (focusing on regions likely containing
the global optimum). By balancing these two strategies, Bayesian Optimization
identifies probable optimal areas while ensuring comprehensive search
coverage.
In practice, this method often leads to quicker and better results.

Note: for a manual hyperparameter optimization example, see
"Hyperparameter Optimization" notebook.

.. GENERATED FROM PYTHON SOURCE LINES 42-54

.. code-block:: Python


    print(__doc__)
    import numpy as np

    np.random.seed(123)
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC

    from skopt import BayesSearchCV








.. GENERATED FROM PYTHON SOURCE LINES 55-59

Minimal example
===============

A minimal example of optimizing hyperparameters of SVC (Support Vector machine Classifier) is given below.

.. GENERATED FROM PYTHON SOURCE LINES 59-84

.. code-block:: Python



    X, y = load_digits(n_class=10, return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=0.75, test_size=0.25, random_state=0
    )

    # log-uniform: understand as search over p = exp(x) by varying x
    opt = BayesSearchCV(
        SVC(),
        {
            'C': (1e-6, 1e6, 'log-uniform'),
            'gamma': (1e-6, 1e1, 'log-uniform'),
            'degree': (1, 8),  # integer valued parameter
            'kernel': ['linear', 'poly', 'rbf'],  # categorical parameter
        },
        n_iter=32,
        cv=3,
    )

    opt.fit(X_train, y_train)

    print("val. score: %s" % opt.best_score_)
    print("test score: %s" % opt.score(X_test, y_test))





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    val. score: 0.9866369710467705
    test score: 0.9844444444444445




.. GENERATED FROM PYTHON SOURCE LINES 85-92

Advanced example
================

In practice, one wants to enumerate over multiple predictive model classes,
with different search spaces and number of evaluations per class. An
example of such search over parameters of Linear SVM, Kernel SVM, and
decision trees is given below.

.. GENERATED FROM PYTHON SOURCE LINES 92-140

.. code-block:: Python


    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from sklearn.pipeline import Pipeline
    from sklearn.svm import SVC, LinearSVC

    from skopt import BayesSearchCV
    from skopt.plots import plot_histogram, plot_objective
    from skopt.space import Categorical, Integer, Real

    X, y = load_digits(n_class=10, return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # pipeline class is used as estimator to enable
    # search over different model types
    pipe = Pipeline([('model', SVC())])

    # single categorical value of 'model' parameter is
    # sets the model class
    # We will get ConvergenceWarnings because the problem is not well-conditioned.
    # But that's fine, this is just an example.
    linsvc_search = {
        'model': [LinearSVC(max_iter=1000, dual="auto")],
        'model__C': (1e-6, 1e6, 'log-uniform'),
    }

    # explicit dimension classes can be specified like this
    svc_search = {
        'model': Categorical([SVC()]),
        'model__C': Real(1e-6, 1e6, prior='log-uniform'),
        'model__gamma': Real(1e-6, 1e1, prior='log-uniform'),
        'model__degree': Integer(1, 8),
        'model__kernel': Categorical(['linear', 'poly', 'rbf']),
    }

    opt = BayesSearchCV(
        pipe,
        # (parameter space, # of evaluations)
        [(svc_search, 40), (linsvc_search, 16)],
        cv=3,
    )

    opt.fit(X_train, y_train)

    print("val. score: %s" % opt.best_score_)
    print("test score: %s" % opt.score(X_test, y_test))
    print("best params: %s" % str(opt.best_params_))





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    val. score: 0.9881217520415739
    test score: 0.9888888888888889
    best params: OrderedDict([('model', SVC()), ('model__C', 4.580543393203649), ('model__degree', 3), ('model__gamma', 0.0002585937465230229), ('model__kernel', 'poly')])




.. GENERATED FROM PYTHON SOURCE LINES 141-143

Partial Dependence plot of the objective function for SVC


.. GENERATED FROM PYTHON SOURCE LINES 143-150

.. code-block:: Python

    _ = plot_objective(
        opt.optimizer_results_[0],
        dimensions=["C", "degree", "gamma", "kernel"],
        n_minimum_search=int(1e8),
    )
    plt.show()




.. image-sg:: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_001.png
   :alt: sklearn gridsearchcv replacement
   :srcset: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 151-153

Plot of the histogram for LinearSVC


.. GENERATED FROM PYTHON SOURCE LINES 153-156

.. code-block:: Python

    _ = plot_histogram(opt.optimizer_results_[1], 1)
    plt.show()




.. image-sg:: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_002.png
   :alt: sklearn gridsearchcv replacement
   :srcset: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_002.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 157-171

Progress monitoring and control using `callback` argument of `fit` method
=========================================================================

It is possible to monitor the progress of :class:`BayesSearchCV` with an event
handler that is called on every step of subspace exploration. For single job
mode, this is called on every evaluation of model configuration, and for
parallel mode, this is called when n_jobs model configurations are evaluated
in parallel.

Additionally, exploration can be stopped if the callback returns `True`.
This can be used to stop the exploration early, for instance when the
accuracy that you get is sufficiently high.

An example usage is shown below.

.. GENERATED FROM PYTHON SOURCE LINES 171-198

.. code-block:: Python


    from sklearn.datasets import load_iris
    from sklearn.svm import SVC

    from skopt import BayesSearchCV

    X, y = load_iris(return_X_y=True)

    searchcv = BayesSearchCV(
        SVC(gamma='scale'),
        search_spaces={'C': (0.01, 100.0, 'log-uniform')},
        n_iter=10,
        cv=3,
    )


    # callback handler
    def on_step(optim_result):
        score = -optim_result['fun']
        print("best score: %s" % score)
        if score >= 0.98:
            print('Interrupting!')
            return True


    searchcv.fit(X, y, callback=on_step)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    best score: 0.98
    Interrupting!


.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <style>#sk-container-id-1 {
      /* Definition of color scheme common for light and dark mode */
      --sklearn-color-text: black;
      --sklearn-color-line: gray;
      /* Definition of color scheme for unfitted estimators */
      --sklearn-color-unfitted-level-0: #fff5e6;
      --sklearn-color-unfitted-level-1: #f6e4d2;
      --sklearn-color-unfitted-level-2: #ffe0b3;
      --sklearn-color-unfitted-level-3: chocolate;
      /* Definition of color scheme for fitted estimators */
      --sklearn-color-fitted-level-0: #f0f8ff;
      --sklearn-color-fitted-level-1: #d4ebff;
      --sklearn-color-fitted-level-2: #b3dbfd;
      --sklearn-color-fitted-level-3: cornflowerblue;

      /* Specific color for light theme */
      --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
      --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-icon: #696969;

      @media (prefers-color-scheme: dark) {
        /* Redefinition of color scheme for dark theme */
        --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
        --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-icon: #878787;
      }
    }

    #sk-container-id-1 {
      color: var(--sklearn-color-text);
    }

    #sk-container-id-1 pre {
      padding: 0;
    }

    #sk-container-id-1 input.sk-hidden--visually {
      border: 0;
      clip: rect(1px 1px 1px 1px);
      clip: rect(1px, 1px, 1px, 1px);
      height: 1px;
      margin: -1px;
      overflow: hidden;
      padding: 0;
      position: absolute;
      width: 1px;
    }

    #sk-container-id-1 div.sk-dashed-wrapped {
      border: 1px dashed var(--sklearn-color-line);
      margin: 0 0.4em 0.5em 0.4em;
      box-sizing: border-box;
      padding-bottom: 0.4em;
      background-color: var(--sklearn-color-background);
    }

    #sk-container-id-1 div.sk-container {
      /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
         but bootstrap.min.css set `[hidden] { display: none !important; }`
         so we also need the `!important` here to be able to override the
         default hidden behavior on the sphinx rendered scikit-learn.org.
         See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
      display: inline-block !important;
      position: relative;
    }

    #sk-container-id-1 div.sk-text-repr-fallback {
      display: none;
    }

    div.sk-parallel-item,
    div.sk-serial,
    div.sk-item {
      /* draw centered vertical line to link estimators */
      background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
      background-size: 2px 100%;
      background-repeat: no-repeat;
      background-position: center center;
    }

    /* Parallel-specific style estimator block */

    #sk-container-id-1 div.sk-parallel-item::after {
      content: "";
      width: 100%;
      border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
      flex-grow: 1;
    }

    #sk-container-id-1 div.sk-parallel {
      display: flex;
      align-items: stretch;
      justify-content: center;
      background-color: var(--sklearn-color-background);
      position: relative;
    }

    #sk-container-id-1 div.sk-parallel-item {
      display: flex;
      flex-direction: column;
    }

    #sk-container-id-1 div.sk-parallel-item:first-child::after {
      align-self: flex-end;
      width: 50%;
    }

    #sk-container-id-1 div.sk-parallel-item:last-child::after {
      align-self: flex-start;
      width: 50%;
    }

    #sk-container-id-1 div.sk-parallel-item:only-child::after {
      width: 0;
    }

    /* Serial-specific style estimator block */

    #sk-container-id-1 div.sk-serial {
      display: flex;
      flex-direction: column;
      align-items: center;
      background-color: var(--sklearn-color-background);
      padding-right: 1em;
      padding-left: 1em;
    }


    /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
    clickable and can be expanded/collapsed.
    - Pipeline and ColumnTransformer use this feature and define the default style
    - Estimators will overwrite some part of the style using the `sk-estimator` class
    */

    /* Pipeline and ColumnTransformer style (default) */

    #sk-container-id-1 div.sk-toggleable {
      /* Default theme specific background. It is overwritten whether we have a
      specific estimator or a Pipeline/ColumnTransformer */
      background-color: var(--sklearn-color-background);
    }

    /* Toggleable label */
    #sk-container-id-1 label.sk-toggleable__label {
      cursor: pointer;
      display: block;
      width: 100%;
      margin-bottom: 0;
      padding: 0.5em;
      box-sizing: border-box;
      text-align: center;
    }

    #sk-container-id-1 label.sk-toggleable__label-arrow:before {
      /* Arrow on the left of the label */
      content: "▸";
      float: left;
      margin-right: 0.25em;
      color: var(--sklearn-color-icon);
    }

    #sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {
      color: var(--sklearn-color-text);
    }

    /* Toggleable content - dropdown */

    #sk-container-id-1 div.sk-toggleable__content {
      max-height: 0;
      max-width: 0;
      overflow: hidden;
      text-align: left;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-1 div.sk-toggleable__content.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-1 div.sk-toggleable__content pre {
      margin: 0.2em;
      border-radius: 0.25em;
      color: var(--sklearn-color-text);
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-1 div.sk-toggleable__content.fitted pre {
      /* unfitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {
      /* Expand drop-down */
      max-height: 200px;
      max-width: 100%;
      overflow: auto;
    }

    #sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
      content: "▾";
    }

    /* Pipeline/ColumnTransformer-specific style */

    #sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator-specific style */

    /* Colorize estimator box */
    #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    #sk-container-id-1 div.sk-label label.sk-toggleable__label,
    #sk-container-id-1 div.sk-label label {
      /* The background is the default theme color */
      color: var(--sklearn-color-text-on-default-background);
    }

    /* On hover, darken the color of the background */
    #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    /* Label box, darken color on hover, fitted */
    #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator label */

    #sk-container-id-1 div.sk-label label {
      font-family: monospace;
      font-weight: bold;
      display: inline-block;
      line-height: 1.2em;
    }

    #sk-container-id-1 div.sk-label-container {
      text-align: center;
    }

    /* Estimator-specific */
    #sk-container-id-1 div.sk-estimator {
      font-family: monospace;
      border: 1px dotted var(--sklearn-color-border-box);
      border-radius: 0.25em;
      box-sizing: border-box;
      margin-bottom: 0.5em;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-1 div.sk-estimator.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    /* on hover */
    #sk-container-id-1 div.sk-estimator:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-1 div.sk-estimator.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Specification for estimator info (e.g. "i" and "?") */

    /* Common style for "i" and "?" */

    .sk-estimator-doc-link,
    a:link.sk-estimator-doc-link,
    a:visited.sk-estimator-doc-link {
      float: right;
      font-size: smaller;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1em;
      height: 1em;
      width: 1em;
      text-decoration: none !important;
      margin-left: 1ex;
      /* unfitted */
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
      color: var(--sklearn-color-unfitted-level-1);
    }

    .sk-estimator-doc-link.fitted,
    a:link.sk-estimator-doc-link.fitted,
    a:visited.sk-estimator-doc-link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    div.sk-estimator:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover,
    div.sk-label-container:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover,
    div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    /* Span, style for the box shown on hovering the info icon */
    .sk-estimator-doc-link span {
      display: none;
      z-index: 9999;
      position: relative;
      font-weight: normal;
      right: .2ex;
      padding: .5ex;
      margin: .5ex;
      width: min-content;
      min-width: 20ex;
      max-width: 50ex;
      color: var(--sklearn-color-text);
      box-shadow: 2pt 2pt 4pt #999;
      /* unfitted */
      background: var(--sklearn-color-unfitted-level-0);
      border: .5pt solid var(--sklearn-color-unfitted-level-3);
    }

    .sk-estimator-doc-link.fitted span {
      /* fitted */
      background: var(--sklearn-color-fitted-level-0);
      border: var(--sklearn-color-fitted-level-3);
    }

    .sk-estimator-doc-link:hover span {
      display: block;
    }

    /* "?"-specific style due to the `<a>` HTML tag */

    #sk-container-id-1 a.estimator_doc_link {
      float: right;
      font-size: 1rem;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1rem;
      height: 1rem;
      width: 1rem;
      text-decoration: none;
      /* unfitted */
      color: var(--sklearn-color-unfitted-level-1);
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
    }

    #sk-container-id-1 a.estimator_doc_link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    #sk-container-id-1 a.estimator_doc_link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    #sk-container-id-1 a.estimator_doc_link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
    }
    </style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>BayesSearchCV(cv=3, estimator=SVC(), n_iter=10,
                  search_spaces={&#x27;C&#x27;: (0.01, 100.0, &#x27;log-uniform&#x27;)})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;BayesSearchCV<span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>BayesSearchCV(cv=3, estimator=SVC(), n_iter=10,
                  search_spaces={&#x27;C&#x27;: (0.01, 100.0, &#x27;log-uniform&#x27;)})</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">estimator: SVC</label><div class="sk-toggleable__content fitted"><pre>SVC()</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SVC<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.svm.SVC.html">?<span>Documentation for SVC</span></a></label><div class="sk-toggleable__content fitted"><pre>SVC()</pre></div> </div></div></div></div></div></div></div></div></div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 199-207

Counting total iterations that will be used to explore all subspaces
====================================================================

Subspaces in previous examples can further increase in complexity if you add
new model subspaces or dimensions for feature extraction pipelines. For
monitoring of progress, you would like to know the total number of
iterations it will take to explore all subspaces. This can be
calculated with `total_iterations` property, as in the code below.

.. GENERATED FROM PYTHON SOURCE LINES 207-225

.. code-block:: Python


    from sklearn.datasets import load_iris
    from sklearn.svm import SVC

    from skopt import BayesSearchCV

    X, y = load_iris(return_X_y=True)

    searchcv = BayesSearchCV(
        SVC(),
        search_spaces=[
            ({'C': (0.1, 1.0)}, 19),  # 19 iterations for this subspace
            {'gamma': (0.1, 1.0)},
        ],
        n_iter=10,
    )

    print(searchcv.total_iterations)




.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    29





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (1 minutes 33.880 seconds)


.. _sphx_glr_download_auto_examples_sklearn-gridsearchcv-replacement.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/sklearn-gridsearchcv-replacement.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: sklearn-gridsearchcv-replacement.ipynb <sklearn-gridsearchcv-replacement.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: sklearn-gridsearchcv-replacement.py <sklearn-gridsearchcv-replacement.py>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_