1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\sklearn-gridsearchcv-replacement.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_sklearn-gridsearchcv-replacement.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_sklearn-gridsearchcv-replacement.py:
==========================================
Scikit-learn hyperparameter search wrapper
==========================================
Iaroslav Shcherbatyi, Tim Head and Gilles Louppe. June 2017.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Introduction
============
This example assumes basic familiarity with
`scikit-learn <http://scikit-learn.org/stable/index.html>`_.
Search for parameters of machine learning models that results in best
cross-validation performance is necessary in almost all practical
cases to get a model with best generalization estimate.
A standard approach in scikit-learn is to use
:obj:`sklearn.model_selection.GridSearchCV` class, which enumerates
all combinations of hyperparameters values given as input.
This search complexity grows exponentially with the number of parameters.
A more scalable approach is to use
:obj:`sklearn.model_selection.RandomizedSearchCV`, which however does not
take advantage of the structure of a search space.
Scikit-optimize provides a drop-in replacement for these two scikit-learn
methods. The hyperparameter search is achieved by Bayesian Optimization
At each step of the optimization, a surrogate model infers the objective
function using observed evluation results as priors. An acquisition function
utilizes these predictions to navigate between exploration (sampling
unexplored areas) and exploitation (focusing on regions likely containing
the global optimum). By balancing these two strategies, Bayesian Optimization
identifies probable optimal areas while ensuring comprehensive search
coverage.
In practice, this method often leads to quicker and better results.
Note: for a manual hyperparameter optimization example, see
"Hyperparameter Optimization" notebook.
.. GENERATED FROM PYTHON SOURCE LINES 42-54
.. code-block:: Python
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from skopt import BayesSearchCV
.. GENERATED FROM PYTHON SOURCE LINES 55-59
Minimal example
===============
A minimal example of optimizing hyperparameters of SVC (Support Vector machine Classifier) is given below.
.. GENERATED FROM PYTHON SOURCE LINES 59-84
.. code-block:: Python
X, y = load_digits(n_class=10, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.75, test_size=0.25, random_state=0
)
# log-uniform: understand as search over p = exp(x) by varying x
opt = BayesSearchCV(
SVC(),
{
'C': (1e-6, 1e6, 'log-uniform'),
'gamma': (1e-6, 1e1, 'log-uniform'),
'degree': (1, 8), # integer valued parameter
'kernel': ['linear', 'poly', 'rbf'], # categorical parameter
},
n_iter=32,
cv=3,
)
opt.fit(X_train, y_train)
print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))
.. rst-class:: sphx-glr-script-out
.. code-block:: none
val. score: 0.9866369710467705
test score: 0.9844444444444445
.. GENERATED FROM PYTHON SOURCE LINES 85-92
Advanced example
================
In practice, one wants to enumerate over multiple predictive model classes,
with different search spaces and number of evaluations per class. An
example of such search over parameters of Linear SVM, Kernel SVM, and
decision trees is given below.
.. GENERATED FROM PYTHON SOURCE LINES 92-140
.. code-block:: Python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC, LinearSVC
from skopt import BayesSearchCV
from skopt.plots import plot_histogram, plot_objective
from skopt.space import Categorical, Integer, Real
X, y = load_digits(n_class=10, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# pipeline class is used as estimator to enable
# search over different model types
pipe = Pipeline([('model', SVC())])
# single categorical value of 'model' parameter is
# sets the model class
# We will get ConvergenceWarnings because the problem is not well-conditioned.
# But that's fine, this is just an example.
linsvc_search = {
'model': [LinearSVC(max_iter=1000, dual="auto")],
'model__C': (1e-6, 1e6, 'log-uniform'),
}
# explicit dimension classes can be specified like this
svc_search = {
'model': Categorical([SVC()]),
'model__C': Real(1e-6, 1e6, prior='log-uniform'),
'model__gamma': Real(1e-6, 1e1, prior='log-uniform'),
'model__degree': Integer(1, 8),
'model__kernel': Categorical(['linear', 'poly', 'rbf']),
}
opt = BayesSearchCV(
pipe,
# (parameter space, # of evaluations)
[(svc_search, 40), (linsvc_search, 16)],
cv=3,
)
opt.fit(X_train, y_train)
print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))
print("best params: %s" % str(opt.best_params_))
.. rst-class:: sphx-glr-script-out
.. code-block:: none
val. score: 0.9881217520415739
test score: 0.9888888888888889
best params: OrderedDict([('model', SVC()), ('model__C', 4.580543393203649), ('model__degree', 3), ('model__gamma', 0.0002585937465230229), ('model__kernel', 'poly')])
.. GENERATED FROM PYTHON SOURCE LINES 141-143
Partial Dependence plot of the objective function for SVC
.. GENERATED FROM PYTHON SOURCE LINES 143-150
.. code-block:: Python
_ = plot_objective(
opt.optimizer_results_[0],
dimensions=["C", "degree", "gamma", "kernel"],
n_minimum_search=int(1e8),
)
plt.show()
.. image-sg:: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_001.png
:alt: sklearn gridsearchcv replacement
:srcset: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_001.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 151-153
Plot of the histogram for LinearSVC
.. GENERATED FROM PYTHON SOURCE LINES 153-156
.. code-block:: Python
_ = plot_histogram(opt.optimizer_results_[1], 1)
plt.show()
.. image-sg:: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_002.png
:alt: sklearn gridsearchcv replacement
:srcset: /auto_examples/images/sphx_glr_sklearn-gridsearchcv-replacement_002.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 157-171
Progress monitoring and control using `callback` argument of `fit` method
=========================================================================
It is possible to monitor the progress of :class:`BayesSearchCV` with an event
handler that is called on every step of subspace exploration. For single job
mode, this is called on every evaluation of model configuration, and for
parallel mode, this is called when n_jobs model configurations are evaluated
in parallel.
Additionally, exploration can be stopped if the callback returns `True`.
This can be used to stop the exploration early, for instance when the
accuracy that you get is sufficiently high.
An example usage is shown below.
.. GENERATED FROM PYTHON SOURCE LINES 171-198
.. code-block:: Python
from sklearn.datasets import load_iris
from sklearn.svm import SVC
from skopt import BayesSearchCV
X, y = load_iris(return_X_y=True)
searchcv = BayesSearchCV(
SVC(gamma='scale'),
search_spaces={'C': (0.01, 100.0, 'log-uniform')},
n_iter=10,
cv=3,
)
# callback handler
def on_step(optim_result):
score = -optim_result['fun']
print("best score: %s" % score)
if score >= 0.98:
print('Interrupting!')
return True
searchcv.fit(X, y, callback=on_step)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
best score: 0.98
Interrupting!
.. raw:: html
<div class="output_subarea output_html rendered_html output_result">
<style>#sk-container-id-1 {
/* Definition of color scheme common for light and dark mode */
--sklearn-color-text: black;
--sklearn-color-line: gray;
/* Definition of color scheme for unfitted estimators */
--sklearn-color-unfitted-level-0: #fff5e6;
--sklearn-color-unfitted-level-1: #f6e4d2;
--sklearn-color-unfitted-level-2: #ffe0b3;
--sklearn-color-unfitted-level-3: chocolate;
/* Definition of color scheme for fitted estimators */
--sklearn-color-fitted-level-0: #f0f8ff;
--sklearn-color-fitted-level-1: #d4ebff;
--sklearn-color-fitted-level-2: #b3dbfd;
--sklearn-color-fitted-level-3: cornflowerblue;
/* Specific color for light theme */
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
--sklearn-color-icon: #696969;
@media (prefers-color-scheme: dark) {
/* Redefinition of color scheme for dark theme */
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
--sklearn-color-icon: #878787;
}
}
#sk-container-id-1 {
color: var(--sklearn-color-text);
}
#sk-container-id-1 pre {
padding: 0;
}
#sk-container-id-1 input.sk-hidden--visually {
border: 0;
clip: rect(1px 1px 1px 1px);
clip: rect(1px, 1px, 1px, 1px);
height: 1px;
margin: -1px;
overflow: hidden;
padding: 0;
position: absolute;
width: 1px;
}
#sk-container-id-1 div.sk-dashed-wrapped {
border: 1px dashed var(--sklearn-color-line);
margin: 0 0.4em 0.5em 0.4em;
box-sizing: border-box;
padding-bottom: 0.4em;
background-color: var(--sklearn-color-background);
}
#sk-container-id-1 div.sk-container {
/* jupyter's `normalize.less` sets `[hidden] { display: none; }`
but bootstrap.min.css set `[hidden] { display: none !important; }`
so we also need the `!important` here to be able to override the
default hidden behavior on the sphinx rendered scikit-learn.org.
See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
display: inline-block !important;
position: relative;
}
#sk-container-id-1 div.sk-text-repr-fallback {
display: none;
}
div.sk-parallel-item,
div.sk-serial,
div.sk-item {
/* draw centered vertical line to link estimators */
background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
background-size: 2px 100%;
background-repeat: no-repeat;
background-position: center center;
}
/* Parallel-specific style estimator block */
#sk-container-id-1 div.sk-parallel-item::after {
content: "";
width: 100%;
border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
flex-grow: 1;
}
#sk-container-id-1 div.sk-parallel {
display: flex;
align-items: stretch;
justify-content: center;
background-color: var(--sklearn-color-background);
position: relative;
}
#sk-container-id-1 div.sk-parallel-item {
display: flex;
flex-direction: column;
}
#sk-container-id-1 div.sk-parallel-item:first-child::after {
align-self: flex-end;
width: 50%;
}
#sk-container-id-1 div.sk-parallel-item:last-child::after {
align-self: flex-start;
width: 50%;
}
#sk-container-id-1 div.sk-parallel-item:only-child::after {
width: 0;
}
/* Serial-specific style estimator block */
#sk-container-id-1 div.sk-serial {
display: flex;
flex-direction: column;
align-items: center;
background-color: var(--sklearn-color-background);
padding-right: 1em;
padding-left: 1em;
}
/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*/
/* Pipeline and ColumnTransformer style (default) */
#sk-container-id-1 div.sk-toggleable {
/* Default theme specific background. It is overwritten whether we have a
specific estimator or a Pipeline/ColumnTransformer */
background-color: var(--sklearn-color-background);
}
/* Toggleable label */
#sk-container-id-1 label.sk-toggleable__label {
cursor: pointer;
display: block;
width: 100%;
margin-bottom: 0;
padding: 0.5em;
box-sizing: border-box;
text-align: center;
}
#sk-container-id-1 label.sk-toggleable__label-arrow:before {
/* Arrow on the left of the label */
content: "▸";
float: left;
margin-right: 0.25em;
color: var(--sklearn-color-icon);
}
#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {
color: var(--sklearn-color-text);
}
/* Toggleable content - dropdown */
#sk-container-id-1 div.sk-toggleable__content {
max-height: 0;
max-width: 0;
overflow: hidden;
text-align: left;
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-1 div.sk-toggleable__content.fitted {
/* fitted */
background-color: var(--sklearn-color-fitted-level-0);
}
#sk-container-id-1 div.sk-toggleable__content pre {
margin: 0.2em;
border-radius: 0.25em;
color: var(--sklearn-color-text);
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-1 div.sk-toggleable__content.fitted pre {
/* unfitted */
background-color: var(--sklearn-color-fitted-level-0);
}
#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {
/* Expand drop-down */
max-height: 200px;
max-width: 100%;
overflow: auto;
}
#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
content: "▾";
}
/* Pipeline/ColumnTransformer-specific style */
#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
background-color: var(--sklearn-color-fitted-level-2);
}
/* Estimator-specific style */
/* Colorize estimator box */
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
/* fitted */
background-color: var(--sklearn-color-fitted-level-2);
}
#sk-container-id-1 div.sk-label label.sk-toggleable__label,
#sk-container-id-1 div.sk-label label {
/* The background is the default theme color */
color: var(--sklearn-color-text-on-default-background);
}
/* On hover, darken the color of the background */
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-unfitted-level-2);
}
/* Label box, darken color on hover, fitted */
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-fitted-level-2);
}
/* Estimator label */
#sk-container-id-1 div.sk-label label {
font-family: monospace;
font-weight: bold;
display: inline-block;
line-height: 1.2em;
}
#sk-container-id-1 div.sk-label-container {
text-align: center;
}
/* Estimator-specific */
#sk-container-id-1 div.sk-estimator {
font-family: monospace;
border: 1px dotted var(--sklearn-color-border-box);
border-radius: 0.25em;
box-sizing: border-box;
margin-bottom: 0.5em;
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-1 div.sk-estimator.fitted {
/* fitted */
background-color: var(--sklearn-color-fitted-level-0);
}
/* on hover */
#sk-container-id-1 div.sk-estimator:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-1 div.sk-estimator.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-2);
}
/* Specification for estimator info (e.g. "i" and "?") */
/* Common style for "i" and "?" */
.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {
float: right;
font-size: smaller;
line-height: 1em;
font-family: monospace;
background-color: var(--sklearn-color-background);
border-radius: 1em;
height: 1em;
width: 1em;
text-decoration: none !important;
margin-left: 1ex;
/* unfitted */
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
color: var(--sklearn-color-unfitted-level-1);
}
.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {
/* fitted */
border: var(--sklearn-color-fitted-level-1) 1pt solid;
color: var(--sklearn-color-fitted-level-1);
}
/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {
display: none;
z-index: 9999;
position: relative;
font-weight: normal;
right: .2ex;
padding: .5ex;
margin: .5ex;
width: min-content;
min-width: 20ex;
max-width: 50ex;
color: var(--sklearn-color-text);
box-shadow: 2pt 2pt 4pt #999;
/* unfitted */
background: var(--sklearn-color-unfitted-level-0);
border: .5pt solid var(--sklearn-color-unfitted-level-3);
}
.sk-estimator-doc-link.fitted span {
/* fitted */
background: var(--sklearn-color-fitted-level-0);
border: var(--sklearn-color-fitted-level-3);
}
.sk-estimator-doc-link:hover span {
display: block;
}
/* "?"-specific style due to the `<a>` HTML tag */
#sk-container-id-1 a.estimator_doc_link {
float: right;
font-size: 1rem;
line-height: 1em;
font-family: monospace;
background-color: var(--sklearn-color-background);
border-radius: 1rem;
height: 1rem;
width: 1rem;
text-decoration: none;
/* unfitted */
color: var(--sklearn-color-unfitted-level-1);
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}
#sk-container-id-1 a.estimator_doc_link.fitted {
/* fitted */
border: var(--sklearn-color-fitted-level-1) 1pt solid;
color: var(--sklearn-color-fitted-level-1);
}
/* On hover */
#sk-container-id-1 a.estimator_doc_link:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
#sk-container-id-1 a.estimator_doc_link.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>BayesSearchCV(cv=3, estimator=SVC(), n_iter=10,
search_spaces={'C': (0.01, 100.0, 'log-uniform')})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> BayesSearchCV<span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>BayesSearchCV(cv=3, estimator=SVC(), n_iter=10,
search_spaces={'C': (0.01, 100.0, 'log-uniform')})</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">estimator: SVC</label><div class="sk-toggleable__content fitted"><pre>SVC()</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SVC<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.svm.SVC.html">?<span>Documentation for SVC</span></a></label><div class="sk-toggleable__content fitted"><pre>SVC()</pre></div> </div></div></div></div></div></div></div></div></div>
</div>
<br />
<br />
.. GENERATED FROM PYTHON SOURCE LINES 199-207
Counting total iterations that will be used to explore all subspaces
====================================================================
Subspaces in previous examples can further increase in complexity if you add
new model subspaces or dimensions for feature extraction pipelines. For
monitoring of progress, you would like to know the total number of
iterations it will take to explore all subspaces. This can be
calculated with `total_iterations` property, as in the code below.
.. GENERATED FROM PYTHON SOURCE LINES 207-225
.. code-block:: Python
from sklearn.datasets import load_iris
from sklearn.svm import SVC
from skopt import BayesSearchCV
X, y = load_iris(return_X_y=True)
searchcv = BayesSearchCV(
SVC(),
search_spaces=[
({'C': (0.1, 1.0)}, 19), # 19 iterations for this subspace
{'gamma': (0.1, 1.0)},
],
n_iter=10,
)
print(searchcv.total_iterations)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
29
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (1 minutes 33.880 seconds)
.. _sphx_glr_download_auto_examples_sklearn-gridsearchcv-replacement.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/sklearn-gridsearchcv-replacement.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: sklearn-gridsearchcv-replacement.ipynb <sklearn-gridsearchcv-replacement.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: sklearn-gridsearchcv-replacement.py <sklearn-gridsearchcv-replacement.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|