File: strategy-comparison.rst

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (294 lines) | stat: -rw-r--r-- 6,915 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\strategy-comparison.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_strategy-comparison.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_strategy-comparison.py:


==========================
Comparing surrogate models
==========================

Tim Head, July 2016.
Reformatted by Holger Nahrstaedt 2020

.. currentmodule:: skopt

Bayesian optimization or sequential model-based optimization uses a surrogate
model to model the expensive to evaluate function `func`. There are several
choices for what kind of surrogate model to use. This notebook compares the
performance of:

* gaussian processes,
* extra trees, and
* random forests

as surrogate models. A purely random optimization strategy is also used as
a baseline.

.. GENERATED FROM PYTHON SOURCE LINES 23-32

.. code-block:: Python


    print(__doc__)
    import numpy as np

    np.random.seed(123)
    import matplotlib.pyplot as plt

    from skopt.benchmarks import branin as _branin








.. GENERATED FROM PYTHON SOURCE LINES 33-39

Toy model
=========

We will use the :class:`benchmarks.branin` function as toy model for the expensive function.
In a real world application this function would be unknown and expensive
to evaluate.

.. GENERATED FROM PYTHON SOURCE LINES 39-45

.. code-block:: Python



    def branin(x, noise_level=0.0):
        return _branin(x) + noise_level * np.random.randn()









.. GENERATED FROM PYTHON SOURCE LINES 46-79

.. code-block:: Python


    from matplotlib.colors import LogNorm


    def plot_branin():
        fig, ax = plt.subplots()

        x1_values = np.linspace(-5, 10, 100)
        x2_values = np.linspace(0, 15, 100)
        x_ax, y_ax = np.meshgrid(x1_values, x2_values)
        vals = np.c_[x_ax.ravel(), y_ax.ravel()]
        fx = np.reshape([branin(val) for val in vals], (100, 100))

        cm = ax.pcolormesh(
            x_ax, y_ax, fx, norm=LogNorm(vmin=fx.min(), vmax=fx.max()), cmap='viridis_r'
        )

        minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
        ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14, lw=0, label="Minima")

        cb = fig.colorbar(cm)
        cb.set_label("f(x)")

        ax.legend(loc="best", numpoints=1)

        ax.set_xlabel("X1")
        ax.set_xlim([-5, 10])
        ax.set_ylabel("X2")
        ax.set_ylim([0, 15])


    plot_branin()




.. image-sg:: /auto_examples/images/sphx_glr_strategy-comparison_001.png
   :alt: strategy comparison
   :srcset: /auto_examples/images/sphx_glr_strategy-comparison_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 80-95

This shows the value of the two-dimensional branin function and
the three minima.


Objective
=========

The objective of this example is to find one of these minima in as
few iterations as possible. One iteration is defined as one call
to the :class:`benchmarks.branin` function.

We will evaluate each model several times using a different seed for the
random number generator. Then compare the average performance of these
models. This makes the comparison more robust against models that get
"lucky".

.. GENERATED FROM PYTHON SOURCE LINES 95-104

.. code-block:: Python


    from functools import partial

    from skopt import dummy_minimize, forest_minimize, gp_minimize

    func = partial(branin, noise_level=2.0)
    bounds = [(-5.0, 10.0), (0.0, 15.0)]
    n_calls = 60








.. GENERATED FROM PYTHON SOURCE LINES 105-125

.. code-block:: Python



    def run(minimizer, n_iter=5):
        return [
            minimizer(func, bounds, n_calls=n_calls, random_state=n) for n in range(n_iter)
        ]


    # Random search
    dummy_res = run(dummy_minimize)

    # Gaussian processes
    gp_res = run(gp_minimize)

    # Random forest
    rf_res = run(partial(forest_minimize, base_estimator="RF"))

    # Extra trees
    et_res = run(partial(forest_minimize, base_estimator="ET"))








.. GENERATED FROM PYTHON SOURCE LINES 126-127

Note that this can take a few minutes.

.. GENERATED FROM PYTHON SOURCE LINES 127-141

.. code-block:: Python


    from skopt.plots import plot_convergence

    plot = plot_convergence(
        ("dummy_minimize", dummy_res),
        ("gp_minimize", gp_res),
        ("forest_minimize('rf')", rf_res),
        ("forest_minimize('et)", et_res),
        true_minimum=0.397887,
        yscale="log",
    )

    plot.legend(loc="best", prop={'size': 6}, numpoints=1)




.. image-sg:: /auto_examples/images/sphx_glr_strategy-comparison_002.png
   :alt: Convergence plot
   :srcset: /auto_examples/images/sphx_glr_strategy-comparison_002.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none


    <matplotlib.legend.Legend object at 0x0000020BDD754390>



.. GENERATED FROM PYTHON SOURCE LINES 142-155

This plot shows the value of the minimum found (y axis) as a function
of the number of iterations performed so far (x axis). The dashed red line
indicates the true value of the minimum of the :class:`benchmarks.branin` function.

For the first ten iterations all methods perform equally well as they all
start by creating ten random samples before fitting their respective model
for the first time. After iteration ten the next point at which
to evaluate :class:`benchmarks.branin` is guided by the model, which is where differences
start to appear.

Each minimizer only has access to noisy observations of the objective
function, so as time passes (more iterations) it will start observing
values that are below the true value simply because they are fluctuations.


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (3 minutes 7.876 seconds)


.. _sphx_glr_download_auto_examples_strategy-comparison.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/strategy-comparison.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: strategy-comparison.ipynb <strategy-comparison.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: strategy-comparison.py <strategy-comparison.py>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_