File: install.rst

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (46 lines) | stat: -rw-r--r-- 924 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
.. _installation-instructions:

============
Installation
============

scikit-optimize requires:

* Python >= 3.6
* NumPy (>= 1.13.3)
* SciPy (>= 0.19.1)
* joblib (>= 0.11)
* scikit-learn >= 1.0.0
* matplotlib >= 2.0.0

The newest release can be installed via pip:

.. code-block:: bash

    $ pip install scikit-optimize

or via conda:

.. code-block:: bash

    $ conda install -c conda-forge scikit-optimize

The newest development version of scikit-optimize can be installed by:

.. code-block:: bash

    $ pip install git+https://github.com/holgern/scikit-optimize.git

Development version
~~~~~~~~~~~~~~~~~~~

The library is still experimental and under heavy development.
The development version can be installed through:

.. code-block:: bash

    git clone https://github.com/holgern/scikit-optimize.git
    cd scikit-optimize
    pip install -e .

Run the tests by executing `pytest` in the top level directory.