1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
"""
===========================================
Store and load `skopt` optimization results
===========================================
Mikhail Pak, October 2016.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Problem statement
=================
We often want to store optimization results in a file. This can be useful,
for example,
* if you want to share your results with colleagues;
* if you want to archive and/or document your work;
* or if you want to postprocess your results in a different Python instance or on an another computer.
The process of converting an object into a byte stream that can be stored in
a file is called _serialization_.
Conversely, _deserialization_ means loading an object from a byte stream.
**Warning:** Deserialization is not secure against malicious or erroneous
code. Never load serialized data from untrusted or unauthenticated sources!
"""
print(__doc__)
import numpy as np
from skopt import gp_minimize
#############################################################################
# Simple example
# ==============
#
# We will use the same optimization problem as in the
# :ref:`sphx_glr_auto_examples_bayesian-optimization.py` notebook:
noise_level = 0.1
def obj_fun(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level
res = gp_minimize(
obj_fun, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
x0=[0.0], # the starting point
acq_func="LCB", # the acquisition function (optional)
n_calls=15, # the number of evaluations of f including at x0
n_random_starts=3, # the number of random initial points
random_state=777,
)
#############################################################################
# As long as your Python session is active, you can access all the
# optimization results via the `res` object.
#
# So how can you store this data in a file? `skopt` conveniently provides
# functions :class:`skopt.dump` and :class:`skopt.load` that handle this for you.
# These functions are essentially thin wrappers around the
# `joblib <https://joblib.readthedocs.io/en/latest/>`_ module's :obj:`joblib.dump` and :obj:`joblib.load`.
#
# We will now show how to use :class:`skopt.dump` and :class:`skopt.load` for storing
# and loading results.
#
# Using `skopt.dump()` and `skopt.load()`
# =======================================
#
# For storing optimization results into a file, call the :class:`skopt.dump`
# function:
from skopt import dump, load
dump(res, 'result.pkl')
#############################################################################
# And load from file using :class:`skopt.load`:
res_loaded = load('result.pkl')
res_loaded.fun
#############################################################################
# You can fine-tune the serialization and deserialization process by calling
# :class:`skopt.dump` and :class:`skopt.load` with additional keyword arguments. See the
# `joblib <https://joblib.readthedocs.io/en/latest/>`_ documentation
# :obj:`joblib.dump` and
# :obj:`joblib.load` for the additional parameters.
#
# For instance, you can specify the compression algorithm and compression
# level (highest in this case):
dump(res, 'result.gz', compress=9)
from os.path import getsize
print('Without compression: {} bytes'.format(getsize('result.pkl')))
print('Compressed with gz: {} bytes'.format(getsize('result.gz')))
#############################################################################
# Unserializable objective functions
# ----------------------------------
#
# Notice that if your objective function is non-trivial (e.g. it calls MATLAB
# engine from Python), it might be not serializable and :class:`skopt.dump` will
# raise an exception when you try to store the optimization results.
# In this case you should disable storing the objective function by calling
# :class:`skopt.dump` with the keyword argument `store_objective=False`:
dump(res, 'result_without_objective.pkl', store_objective=False)
#############################################################################
# Notice that the entry `'func'` is absent in the loaded object but is still
# present in the local variable:
res_loaded_without_objective = load('result_without_objective.pkl')
print('Loaded object: ', res_loaded_without_objective.specs['args'].keys())
print('Local variable:', res.specs['args'].keys())
#############################################################################
# Possible problems
# =================
#
# * **Python versions incompatibility:** In general, objects serialized in
# Python 2 cannot be deserialized in Python 3 and vice versa.
# * **Security issues:** Once again, do not load any files from untrusted
# sources.
# * **Extremely large results objects:** If your optimization results object
#
# is extremely large, calling :class:`skopt.dump` with `store_objective=False` might
# cause performance issues. This is due to creation of a deep copy without the
# objective function. If the objective function it is not critical to you, you
# can simply delete it before calling :class:`skopt.dump`. In this case, no deep
# copy is created:
del res.specs['args']['func']
dump(res, 'result_without_objective_2.pkl')
|