1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
"""
==========================
Comparing surrogate models
==========================
Tim Head, July 2016.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Bayesian optimization or sequential model-based optimization uses a surrogate
model to model the expensive to evaluate function `func`. There are several
choices for what kind of surrogate model to use. This notebook compares the
performance of:
* gaussian processes,
* extra trees, and
* random forests
as surrogate models. A purely random optimization strategy is also used as
a baseline.
"""
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
from skopt.benchmarks import branin as _branin
#############################################################################
# Toy model
# =========
#
# We will use the :class:`benchmarks.branin` function as toy model for the expensive function.
# In a real world application this function would be unknown and expensive
# to evaluate.
def branin(x, noise_level=0.0):
return _branin(x) + noise_level * np.random.randn()
#############################################################################
from matplotlib.colors import LogNorm
def plot_branin():
fig, ax = plt.subplots()
x1_values = np.linspace(-5, 10, 100)
x2_values = np.linspace(0, 15, 100)
x_ax, y_ax = np.meshgrid(x1_values, x2_values)
vals = np.c_[x_ax.ravel(), y_ax.ravel()]
fx = np.reshape([branin(val) for val in vals], (100, 100))
cm = ax.pcolormesh(
x_ax, y_ax, fx, norm=LogNorm(vmin=fx.min(), vmax=fx.max()), cmap='viridis_r'
)
minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14, lw=0, label="Minima")
cb = fig.colorbar(cm)
cb.set_label("f(x)")
ax.legend(loc="best", numpoints=1)
ax.set_xlabel("X1")
ax.set_xlim([-5, 10])
ax.set_ylabel("X2")
ax.set_ylim([0, 15])
plot_branin()
#############################################################################
# This shows the value of the two-dimensional branin function and
# the three minima.
#
#
# Objective
# =========
#
# The objective of this example is to find one of these minima in as
# few iterations as possible. One iteration is defined as one call
# to the :class:`benchmarks.branin` function.
#
# We will evaluate each model several times using a different seed for the
# random number generator. Then compare the average performance of these
# models. This makes the comparison more robust against models that get
# "lucky".
from functools import partial
from skopt import dummy_minimize, forest_minimize, gp_minimize
func = partial(branin, noise_level=2.0)
bounds = [(-5.0, 10.0), (0.0, 15.0)]
n_calls = 60
#############################################################################
def run(minimizer, n_iter=5):
return [
minimizer(func, bounds, n_calls=n_calls, random_state=n) for n in range(n_iter)
]
# Random search
dummy_res = run(dummy_minimize)
# Gaussian processes
gp_res = run(gp_minimize)
# Random forest
rf_res = run(partial(forest_minimize, base_estimator="RF"))
# Extra trees
et_res = run(partial(forest_minimize, base_estimator="ET"))
#############################################################################
# Note that this can take a few minutes.
from skopt.plots import plot_convergence
plot = plot_convergence(
("dummy_minimize", dummy_res),
("gp_minimize", gp_res),
("forest_minimize('rf')", rf_res),
("forest_minimize('et)", et_res),
true_minimum=0.397887,
yscale="log",
)
plot.legend(loc="best", prop={'size': 6}, numpoints=1)
#############################################################################
# This plot shows the value of the minimum found (y axis) as a function
# of the number of iterations performed so far (x axis). The dashed red line
# indicates the true value of the minimum of the :class:`benchmarks.branin` function.
#
# For the first ten iterations all methods perform equally well as they all
# start by creating ten random samples before fitting their respective model
# for the first time. After iteration ten the next point at which
# to evaluate :class:`benchmarks.branin` is guided by the model, which is where differences
# start to appear.
#
# Each minimizer only has access to noisy observations of the objective
# function, so as time passes (more iterations) it will start observing
# values that are below the true value simply because they are fluctuations.
|