1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
"""A collection of benchmark problems."""
import numpy as np
def bench1(x):
"""A benchmark function for test purposes.
f(x) = x ** 2
It has a single minima with f(x*) = 0 at x* = 0.
"""
return x[0] ** 2
def bench1_with_time(x):
"""Same as bench1 but returns the computation time (constant)."""
return x[0] ** 2, 2.22
def bench2(x):
"""A benchmark function for test purposes.
f(x) = x ** 2 if x < 0
(x-5) ** 2 - 5 otherwise.
It has a global minima with f(x*) = -5 at x* = 5.
"""
if x[0] < 0:
return x[0] ** 2
else:
return (x[0] - 5) ** 2 - 5
def bench3(x):
"""A benchmark function for test purposes.
f(x) = sin(5*x) * (1 - tanh(x ** 2))
It has a global minima with f(x*) ~= -0.9 at x* ~= -0.3.
"""
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2))
def bench4(x):
"""A benchmark function for test purposes.
f(x) = float(x) ** 2
where x is a string. It has a single minima with f(x*) = 0 at x* =
"0". This benchmark is used for checking support of categorical
variables.
"""
return float(x[0]) ** 2
def bench5(x):
"""A benchmark function for test purposes.
f(x) = float(x[0]) ** 2 + x[1] ** 2
where x is a string. It has a single minima with f(x) = 0 at x[0] =
"0" and x[1] = "0" This benchmark is used for checking support of
mixed spaces.
"""
return float(x[0]) ** 2 + x[1] ** 2
def branin(
x, a=1, b=5.1 / (4 * np.pi**2), c=5.0 / np.pi, r=6, s=10, t=1.0 / (8 * np.pi)
):
"""Branin-Hoo function is defined on the square :math:`x1 \\in [-5, 10], x2 \\in [0,
15]`.
It has three minima with f(x*) = 0.397887 at x* = (-pi, 12.275),
(+pi, 2.275), and (9.42478, 2.475).
More details: <http://www.sfu.ca/~ssurjano/branin.html>
"""
return (
a * (x[1] - b * x[0] ** 2 + c * x[0] - r) ** 2 + s * (1 - t) * np.cos(x[0]) + s
)
def hart6(
x,
alpha=np.asarray([1.0, 1.2, 3.0, 3.2]),
P=10**-4
* np.asarray(
[
[1312, 1696, 5569, 124, 8283, 5886],
[2329, 4135, 8307, 3736, 1004, 9991],
[2348, 1451, 3522, 2883, 3047, 6650],
[4047, 8828, 8732, 5743, 1091, 381],
]
),
A=np.asarray(
[
[10, 3, 17, 3.50, 1.7, 8],
[0.05, 10, 17, 0.1, 8, 14],
[3, 3.5, 1.7, 10, 17, 8],
[17, 8, 0.05, 10, 0.1, 14],
]
),
):
"""The six dimensional Hartmann function is defined on the unit hypercube.
It has six local minima and one global minimum f(x*) = -3.32237 at
x* = (0.20169, 0.15001, 0.476874, 0.275332, 0.311652, 0.6573).
More details: <http://www.sfu.ca/~ssurjano/hart6.html>
"""
return -np.sum(alpha * np.exp(-np.sum(A * (np.array(x) - P) ** 2, axis=1)))
|