1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
"""Monitor and influence the optimization procedure via callbacks.
Callbacks are callables which are invoked after each iteration of the optimizer
and are passed the results "so far". Callbacks can monitor progress, or stop
the optimization early by returning `True`.
"""
try:
from collections.abc import Callable
except ImportError:
from collections.abc import Callable
import os
from time import time
import numpy as np
from skopt.utils import dump, load
def check_callback(callback):
"""Check if callback is a callable or a list of callables."""
if callback is not None:
if isinstance(callback, Callable):
return [callback]
elif isinstance(callback, list) and all(
[isinstance(c, Callable) for c in callback]
):
return callback
else:
raise ValueError(
"callback should be either a callable or " "a list of callables."
)
else:
return []
class VerboseCallback:
"""Callback to control the verbosity.
Parameters
----------
n_init : int, optional
Number of points provided by the user which are yet to be
evaluated. This is equal to `len(x0)` when `y0` is None
n_random : int, optional
Number of points randomly chosen.
n_total : int
Total number of func calls.
Attributes
----------
iter_no : int
Number of iterations of the optimization routine.
"""
def __init__(self, n_total, n_init=0, n_random=0):
self.n_init = n_init
self.n_random = n_random
self.n_total = n_total
self.iter_no = 1
self._start_time = time()
self._print_info(start=True)
def _print_info(self, start=True):
iter_no = self.iter_no
if start:
status = "started"
eval_status = "Evaluating function"
search_status = "Searching for the next optimal point."
else:
status = "ended"
eval_status = "Evaluation done"
search_status = "Search finished for the next optimal point."
if iter_no <= self.n_init:
print(
"Iteration No: %d %s. %s at provided point."
% (iter_no, status, eval_status)
)
elif self.n_init < iter_no <= (self.n_random + self.n_init):
print(
"Iteration No: %d %s. %s at random point."
% (iter_no, status, eval_status)
)
else:
print("Iteration No: %d %s. %s" % (iter_no, status, search_status))
def __call__(self, res):
"""
Parameters
----------
res : `OptimizeResult`, scipy object
The optimization as a OptimizeResult object.
"""
time_taken = time() - self._start_time
self._print_info(start=False)
curr_y = res.func_vals[-1]
curr_min = res.fun
print("Time taken: %0.4f" % time_taken)
print("Function value obtained: %0.4f" % curr_y)
print("Current minimum: %0.4f" % curr_min)
self.iter_no += 1
if self.iter_no <= self.n_total:
self._print_info(start=True)
self._start_time = time()
class TimerCallback:
"""Log the elapsed time between each iteration of the minimization loop.
The time for each iteration is stored in the `iter_time` attribute which
you can inspect after the minimization has completed.
Attributes
----------
iter_time : list, shape (n_iter,)
`iter_time[i-1]` gives the time taken to complete iteration `i`
"""
def __init__(self):
self._time = time()
self.iter_time = []
def __call__(self, res):
"""
Parameters
----------
res : `OptimizeResult`, scipy object
The optimization as a OptimizeResult object.
"""
elapsed_time = time() - self._time
self.iter_time.append(elapsed_time)
self._time = time()
class EarlyStopper:
"""Decide to continue or not given the results so far.
The optimization procedure will be stopped if the callback returns
True.
"""
def __call__(self, result):
"""
Parameters
----------
result : `OptimizeResult`, scipy object
The optimization as a OptimizeResult object.
"""
return self._criterion(result)
def _criterion(self, result):
"""Compute the decision to stop or not.
Classes inheriting from `EarlyStop` should use this method to
implement their decision logic.
Parameters
----------
result : `OptimizeResult`, scipy object
The optimization as a OptimizeResult object.
Returns
-------
decision : boolean or None
Return True/False if the criterion can make a decision or `None` if
there is not enough data yet to make a decision.
"""
raise NotImplementedError(
"The _criterion method should be implemented"
" by subclasses of EarlyStopper."
)
class DeltaXStopper(EarlyStopper):
"""Stop the optimization when ``|x1 - x2| < delta``
If the last two positions at which the objective has been evaluated
are less than `delta` apart stop the optimization procedure.
"""
def __init__(self, delta):
super(EarlyStopper, self).__init__()
self.delta = delta
def _criterion(self, result):
if len(result.x_iters) >= 2:
return (
result.space.distance(result.x_iters[-2], result.x_iters[-1])
< self.delta
)
else:
return None
class DeltaYStopper(EarlyStopper):
"""Stop the optimization if the `n_best` minima are within `delta`
Stop the optimizer if the absolute difference between the `n_best`
objective values is less than `delta`.
"""
def __init__(self, delta, n_best=5):
super(EarlyStopper, self).__init__()
self.delta = delta
self.n_best = n_best
def _criterion(self, result):
if len(result.func_vals) >= self.n_best:
func_vals = np.sort(result.func_vals)
worst = func_vals[self.n_best - 1]
best = func_vals[0]
# worst is always larger, so no need for abs()
return worst - best < self.delta
else:
return None
class HollowIterationsStopper(EarlyStopper):
"""Stop if the improvement over the last n iterations is below a threshold."""
def __init__(self, n_iterations, threshold=0):
super().__init__()
self.n_iterations = n_iterations
self.threshold = abs(threshold)
def _criterion(self, result):
if len(result.func_vals) <= self.n_iterations:
return False
cummin = np.minimum.accumulate(result.func_vals)
return cummin[-self.n_iterations - 1] - cummin[-1] <= self.threshold
class DeadlineStopper(EarlyStopper):
"""Stop the optimization before running out of a fixed budget of time.
Attributes
----------
iter_time : list, shape (n_iter,)
`iter_time[i-1]` gives the time taken to complete iteration `i`
Parameters
----------
total_time : float
fixed budget of time (seconds) that the optimization must
finish within.
"""
def __init__(self, total_time):
super().__init__()
self._time = time()
self.iter_time = []
self.total_time = total_time
def _criterion(self, result):
elapsed_time = time() - self._time
self.iter_time.append(elapsed_time)
self._time = time()
if result.x_iters:
time_remaining = self.total_time - np.sum(self.iter_time)
return time_remaining <= np.max(self.iter_time)
else:
return None
class StdStopper(EarlyStopper):
"""Stop the optimization when the standard deviation of the Gaussian process is
lower than the threshold.
Paper: automatic-termination-for-hyperparameter-optimization
"""
def __init__(self, threshold: float, log_interval=10) -> None:
super(EarlyStopper, self).__init__()
self.threshold = threshold
self.log_interval = log_interval
def _criterion(self, result) -> bool:
y_train_std_ = []
for model in result.models:
y_train_std_.append(model.y_train_std_)
if len(y_train_std_) == 0:
return False
if len(y_train_std_) % self.log_interval == 0:
print(
"num_models:",
len(y_train_std_),
"min_std:",
min(y_train_std_),
"max_std:",
max(y_train_std_),
)
return min(y_train_std_) <= self.threshold
class ThresholdStopper(EarlyStopper):
"""Stop the optimization when the objective value is lower than the given
threshold."""
def __init__(self, threshold: float) -> None:
super(EarlyStopper, self).__init__()
self.threshold = threshold
def _criterion(self, result) -> bool:
return np.any([val <= self.threshold for val in result.func_vals])
class CheckpointSaver:
"""Save current state after each iteration with :class:`skopt.dump`. Allows to re-
use previously computed function evaluations.
Examples
--------
>>> import skopt
>>> def obj_fun(x):
... return x[0]**2
>>> checkpoint_callback = skopt.callbacks.CheckpointSaver("./result.pkl")
>>> skopt.gp_minimize(obj_fun, [(-2, 2)], n_calls=10,
... callback=[checkpoint_callback]) # doctest: +SKIP
>>> # when re-using stored results.
>>> checkpoint_callback = skopt.callbacks.CheckpointSaver("./result.pkl")
>>> skopt.gp_minimize(obj_fun, [(-2, 2)], n_calls=10,
... callback=[checkpoint_callback]
... **checkpoint_callback.load()) # doctest: +SKIP
Parameters
----------
checkpoint_path : string
location where checkpoint will be saved to;
dump_options : string
options to pass on to `skopt.dump`, like `compress=9`
"""
def __init__(self, checkpoint_path, **dump_options):
self.checkpoint_path = checkpoint_path
self.dump_options = dump_options
def __call__(self, res):
"""
Parameters
----------
res : `OptimizeResult`, scipy object
The optimization as a OptimizeResult object.
"""
dump(res, self.checkpoint_path, **self.dump_options)
def load(self):
"""Loads from disk previously evaluated points.
Returns
-------
Dict with previous evaluations and their latest surrogate state.
"""
if os.path.exists(self.checkpoint_path):
result = load(self.checkpoint_path)
return {
'x0': result.x_iters,
'y0': result.func_vals,
'base_estimator': result.models[-1] if result.models else None,
}
return {}
|