File: forest.py

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (476 lines) | stat: -rw-r--r-- 18,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import numpy as np
from sklearn.ensemble import ExtraTreesRegressor as _sk_ExtraTreesRegressor
from sklearn.ensemble import RandomForestRegressor as _sk_RandomForestRegressor


def _return_std(X, trees, predictions, min_variance):
    """Returns `std(Y | X)`.

    Can be calculated by E[Var(Y | Tree)] + Var(E[Y | Tree]) where
    P(Tree) is `1 / len(trees)`.

    Parameters
    ----------
    X : array-like, shape=(n_samples, n_features)
        Input data.

    trees : list, shape=(n_estimators,)
        List of fit sklearn trees as obtained from the ``estimators_``
        attribute of a fit RandomForestRegressor or ExtraTreesRegressor.

    predictions : array-like, shape=(n_samples,)
        Prediction of each data point as returned by RandomForestRegressor
        or ExtraTreesRegressor.

    Returns
    -------
    std : array-like, shape=(n_samples,)
        Standard deviation of `y` at `X`. If criterion
        is set to "squared_error", then `std[i] ~= std(y | X[i])`.
    """
    # This derives std(y | x) as described in 4.3.2 of arXiv:1211.0906
    std = np.zeros(len(X))

    for tree in trees:
        var_tree = tree.tree_.impurity[tree.apply(X)]

        # This rounding off is done in accordance with the
        # adjustment done in section 4.3.3
        # of http://arxiv.org/pdf/1211.0906v2.pdf to account
        # for cases such as leaves with 1 sample in which there
        # is zero variance.
        var_tree[var_tree < min_variance] = min_variance
        mean_tree = tree.predict(X)
        std += var_tree + mean_tree**2

    std /= len(trees)
    std -= predictions**2.0
    std[std < 0.0] = 0.0
    std = std**0.5
    return std


class RandomForestRegressor(_sk_RandomForestRegressor):
    """RandomForestRegressor that supports conditional std computation.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="squared_error")
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to variance
        reduction as feature selection criterion, and "mae" for the mean
        absolute error.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. note::
            The search for a split does not stop until at least one
            valid partition of the node samples is found, even if it
            requires to effectively inspect more than ``max_features``
            features.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int, float, optional (default=2)
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a percentage and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int, float, optional (default=1)
        The minimum number of samples required to be at a leaf node:

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a percentage and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, optional (default=0.)
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.
        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.
        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

    bootstrap : boolean, optional (default=True)
        Whether bootstrap samples are used when building trees.

    oob_score : bool, optional (default=False)
        whether to use out-of-bag samples to estimate
        the R^2 on unseen data.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    Attributes
    ----------
    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_prediction_ : array of shape = [n_samples]
        Prediction computed with out-of-bag estimate on the training set.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
    """

    def __init__(
        self,
        n_estimators=10,
        criterion='squared_error',
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=1,
        random_state=None,
        verbose=0,
        warm_start=False,
        min_variance=0.0,
    ):
        self.min_variance = min_variance
        super().__init__(
            n_estimators=n_estimators,
            criterion=criterion,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
        )

    def predict(self, X, return_std=False):
        """Predict continuous output for X.

        Parameters
        ----------
        X : array of shape = (n_samples, n_features)
            Input data.

        return_std : boolean
            Whether or not to return the standard deviation.

        Returns
        -------
        predictions : array-like of shape = (n_samples,)
            Predicted values for X. If criterion is set to "squared_error",
            then `predictions[i] ~= mean(y | X[i])`.

        std : array-like of shape=(n_samples,)
            Standard deviation of `y` at `X`. If criterion
            is set to "squared_error", then `std[i] ~= std(y | X[i])`.
        """
        mean = super().predict(X)

        if return_std:
            if self.criterion != "squared_error":
                raise ValueError(
                    "Expected impurity to be 'squared_error', got %s instead"
                    % self.criterion
                )
            std = _return_std(X, self.estimators_, mean, self.min_variance)
            return mean, std
        return mean


class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
    """ExtraTreesRegressor that supports conditional standard deviation.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="squared_error")
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to variance
        reduction as feature selection criterion, and "mae" for the mean
        absolute error.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. note::
            The search for a split does not stop until at least one
            valid partition of the node samples is found, even if it
            requires to effectively inspect more than ``max_features``
            features.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int, float, optional (default=2)
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a percentage and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int, float, optional (default=1)
        The minimum number of samples required to be at a leaf node:

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a percentage and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, optional (default=0.)
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.
        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.
        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

    bootstrap : boolean, optional (default=True)
        Whether bootstrap samples are used when building trees.

    oob_score : bool, optional (default=False)
        whether to use out-of-bag samples to estimate
        the R^2 on unseen data.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    Attributes
    ----------
    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_prediction_ : array of shape = [n_samples]
        Prediction computed with out-of-bag estimate on the training set.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
    """

    def __init__(
        self,
        n_estimators=10,
        criterion='squared_error',
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=False,
        oob_score=False,
        n_jobs=1,
        random_state=None,
        verbose=0,
        warm_start=False,
        min_variance=0.0,
    ):
        self.min_variance = min_variance
        super().__init__(
            n_estimators=n_estimators,
            criterion=criterion,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
        )

    def predict(self, X, return_std=False):
        """Predict continuous output for X.

        Parameters
        ----------
        X : array-like of shape=(n_samples, n_features)
            Input data.

        return_std : boolean
            Whether or not to return the standard deviation.

        Returns
        -------
        predictions : array-like of shape=(n_samples,)
            Predicted values for X. If criterion is set to "squared_error",
            then `predictions[i] ~= mean(y | X[i])`.

        std : array-like of shape=(n_samples,)
            Standard deviation of `y` at `X`. If criterion
            is set to "squared_error", then `std[i] ~= std(y | X[i])`.
        """
        mean = super().predict(X)

        if return_std:
            if self.criterion != "squared_error":
                raise ValueError(
                    "Expected impurity to be 'squared_error', got %s instead"
                    % self.criterion
                )
            std = _return_std(X, self.estimators_, mean, self.min_variance)
            return mean, std

        return mean