1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
import numpy as np
from scipy import optimize
from scipy.spatial.distance import pdist, squareform
try:
from sklearn.preprocessing import OrdinalEncoder
UseOrdinalEncoder = True
except ImportError:
UseOrdinalEncoder = False
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal
from skopt.learning.gaussian_process import GaussianProcessRegressor
from skopt.learning.gaussian_process.kernels import (
RBF,
ConstantKernel,
DotProduct,
ExpSineSquared,
HammingKernel,
Matern,
RationalQuadratic,
WhiteKernel,
)
KERNELS = []
for length_scale in [np.arange(1, 6), [0.2, 0.3, 0.5, 0.6, 0.1]]:
KERNELS.extend(
[
RBF(length_scale=length_scale),
Matern(length_scale=length_scale, nu=0.5),
Matern(length_scale=length_scale, nu=1.5),
Matern(length_scale=length_scale, nu=2.5),
RationalQuadratic(alpha=2.0, length_scale=2.0),
ExpSineSquared(length_scale=2.0, periodicity=3.0),
ConstantKernel(constant_value=1.0),
WhiteKernel(noise_level=2.0),
Matern(length_scale=length_scale, nu=2.5) ** 3.0,
RBF(length_scale=length_scale) + Matern(length_scale=length_scale, nu=1.5),
RBF(length_scale=length_scale) * Matern(length_scale=length_scale, nu=1.5),
DotProduct(sigma_0=2.0),
]
)
# Copied (shamelessly) from sklearn.gaussian_process.kernels
def _approx_fprime(xk, f, epsilon, args=()):
f0 = f(*((xk,) + args))
grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float)
ei = np.zeros((len(xk),), float)
for k in range(len(xk)):
ei[k] = 1.0
d = epsilon * ei
grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k]
ei[k] = 0.0
return grad
def kernel_X_Y(x, y, kernel):
X = np.expand_dims(x, axis=0)
Y = np.expand_dims(y, axis=0)
return kernel(X, Y)[0][0]
def numerical_gradient(X, Y, kernel, step_size=1e-4):
grad = []
for y in Y:
num_grad = optimize.approx_fprime(X, kernel_X_Y, step_size, y, kernel)
grad.append(num_grad)
return np.asarray(grad)
def check_gradient_correctness(kernel, X, Y, step_size=1e-4):
X_grad = kernel.gradient_x(X, Y)
num_grad = numerical_gradient(X, Y, kernel, step_size)
assert_array_almost_equal(X_grad, num_grad, decimal=3)
@pytest.mark.fast_test
@pytest.mark.parametrize("kernel", KERNELS)
def test_gradient_correctness(kernel):
rng = np.random.RandomState(0)
X = rng.randn(5)
Y = rng.randn(10, 5)
check_gradient_correctness(kernel, X, Y)
@pytest.mark.fast_test
@pytest.mark.parametrize("random_state", [0, 1])
@pytest.mark.parametrize("kernel", KERNELS)
def test_gradient_finiteness(random_state, kernel):
"""When x is the same as X_train, gradients might become undefined because they are
divided by d(x, X_train).
Check they are equal to numerical gradients at such points.
"""
rng = np.random.RandomState(random_state)
X = rng.randn(5).tolist()
Y = [X]
check_gradient_correctness(kernel, X, Y, 1e-6)
@pytest.mark.fast_test
def test_distance_string():
# Inspired by test_hamming_string_array in scipy.tests.test_distance
a = np.array(
[
'eggs',
'spam',
'spam',
'eggs',
'spam',
'spam',
'spam',
'spam',
'spam',
'spam',
'spam',
'eggs',
'eggs',
'spam',
'eggs',
'eggs',
'eggs',
'eggs',
'eggs',
'spam',
],
dtype='|S4',
)
b = np.array(
[
'eggs',
'spam',
'spam',
'eggs',
'eggs',
'spam',
'spam',
'spam',
'spam',
'eggs',
'spam',
'eggs',
'spam',
'eggs',
'spam',
'spam',
'eggs',
'spam',
'spam',
'eggs',
],
dtype='|S4',
)
true_values = np.array([[0, 0.45], [0.45, 0]])
X = np.vstack((a, b))
hm = HammingKernel()
assert_array_almost_equal(-np.log(hm(X)) / 20.0, true_values)
@pytest.mark.fast_test
def test_isotropic_kernel():
rng = np.random.RandomState(0)
X = rng.randint(0, 4, (5, 3))
hm = HammingKernel()
# Scipy calulates the mean. We need exp(-sum)
hamming_distance = squareform(pdist(X, metric='hamming'))
scipy_dist = np.exp(-hamming_distance * X.shape[1])
assert_array_almost_equal(scipy_dist, hm(X))
@pytest.mark.fast_test
def test_anisotropic_kernel():
rng = np.random.RandomState(0)
X = rng.randint(0, 4, (5, 3))
hm = HammingKernel()
X_kernel = hm(X)
hm_aniso = HammingKernel(length_scale=[1.0, 1.0, 1.0])
X_kernel_aniso = hm_aniso(X)
assert_array_almost_equal(X_kernel, X_kernel_aniso)
hm = HammingKernel(length_scale=2.0)
X_kernel = hm(X)
hm_aniso = HammingKernel(length_scale=[2.0, 2.0, 2.0])
X_kernel_aniso = hm_aniso(X)
assert_array_almost_equal(X_kernel, X_kernel_aniso)
@pytest.mark.fast_test
def test_kernel_gradient():
rng = np.random.RandomState(0)
hm = HammingKernel(length_scale=2.0)
X = rng.randint(0, 4, (5, 3))
K, K_gradient = hm(X, eval_gradient=True)
assert_array_equal(K_gradient.shape, (5, 5, 1))
def eval_kernel_for_theta(theta, kernel):
kernel_clone = kernel.clone_with_theta(theta)
K = kernel_clone(X, eval_gradient=False)
return K
K_gradient_approx = _approx_fprime(hm.theta, eval_kernel_for_theta, 1e-10, (hm,))
assert_array_almost_equal(K_gradient_approx, K_gradient, 4)
hm = HammingKernel(length_scale=[1.0, 1.0, 1.0])
K_gradient_approx = _approx_fprime(hm.theta, eval_kernel_for_theta, 1e-10, (hm,))
K, K_gradient = hm(X, eval_gradient=True)
assert_array_equal(K_gradient.shape, (5, 5, 3))
assert_array_almost_equal(K_gradient_approx, K_gradient, 4)
X = rng.randint(0, 4, (3, 2))
hm = HammingKernel(length_scale=[0.1, 2.0])
K_gradient_approx = _approx_fprime(hm.theta, eval_kernel_for_theta, 1e-10, (hm,))
K, K_gradient = hm(X, eval_gradient=True)
assert_array_equal(K_gradient.shape, (3, 3, 2))
assert_array_almost_equal(K_gradient_approx, K_gradient, 4)
@pytest.mark.fast_test
def test_Y_is_not_None():
rng = np.random.RandomState(0)
hm = HammingKernel()
X = rng.randint(0, 4, (5, 3))
hm = HammingKernel(length_scale=[1.0, 1.0, 1.0])
assert_array_equal(hm(X), hm(X, X))
@pytest.mark.fast_test
def test_gp_regressor():
rng = np.random.RandomState(0)
X = np.asarray(
[["ham", "spam", "ted"], ["ham", "ted", "ted"], ["ham", "spam", "spam"]]
)
y = rng.randn(3)
hm = HammingKernel(length_scale=[1.0, 1.0, 1.0])
if UseOrdinalEncoder:
enc = OrdinalEncoder()
enc.fit(X)
gpr = GaussianProcessRegressor(hm)
if UseOrdinalEncoder:
gpr.fit(enc.transform(X), y)
assert_array_almost_equal(gpr.predict(enc.transform(X)), y)
assert_array_almost_equal(gpr.predict(enc.transform(X[:2])), y[:2])
else:
gpr.fit(X, y)
assert_array_almost_equal(gpr.predict(X), y)
assert_array_almost_equal(gpr.predict(X[:2]), y[:2])
|