1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from skopt.learning import ExtraTreesRegressor, RandomForestRegressor
def truth(X):
return 0.5 * np.sin(1.75 * X[:, 0])
@pytest.mark.fast_test
def test_random_forest():
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
clf = RandomForestRegressor(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = RandomForestRegressor(
n_estimators=10, min_impurity_decrease=0.1, random_state=1
)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = RandomForestRegressor(
n_estimators=10,
criterion="squared_error",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
bootstrap=True,
oob_score=False,
n_jobs=1,
random_state=1,
verbose=0,
warm_start=False,
)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = RandomForestRegressor(n_estimators=10, max_features=1, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
# also test apply
leaf_indices = clf.apply(X)
assert leaf_indices.shape == (len(X), clf.n_estimators)
@pytest.mark.fast_test
def test_extra_forest():
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
clf = ExtraTreesRegressor(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = ExtraTreesRegressor(
n_estimators=10, min_impurity_decrease=0.1, random_state=1
)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = ExtraTreesRegressor(
n_estimators=10,
criterion="squared_error",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=1,
verbose=0,
warm_start=False,
)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
clf = ExtraTreesRegressor(n_estimators=10, max_features=1, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert 10 == len(clf)
# also test apply
leaf_indices = clf.apply(X)
assert leaf_indices.shape == (len(X), clf.n_estimators)
|