File: plots.py

package info (click to toggle)
scikit-optimize 0.10.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,672 kB
  • sloc: python: 10,659; javascript: 438; makefile: 136; sh: 6
file content (1554 lines) | stat: -rw-r--r-- 54,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
"""Plotting functions."""

import sys
import warnings
from collections import Counter
from collections.abc import Iterable
from functools import partial
from itertools import count

import numpy as np
from scipy.optimize import OptimizeResult

from skopt import expected_minimum, expected_minimum_random_sampling

from .acquisition import _gaussian_acquisition
from .space import Categorical

# For plot tests, matplotlib must be set to headless mode early
if 'pytest' in sys.modules:
    import matplotlib

    matplotlib.use('Agg')

from matplotlib import gridspec
from matplotlib import pyplot as plt
from matplotlib.pyplot import cm
from matplotlib.ticker import FuncFormatter, LogLocator, MaxNLocator  # noqa: E402


def plot_convergence(*args, true_minimum=None, yscale=None, ax=None):
    """Plot one or several convergence traces.

    Parameters
    ----------
    results: `OptimizeResult`, iterable of `OptimizeResult`, or a 2-tuple
        of a label and a `OptimizeResult` or an iterable of `OptimizeResult`.
        The result(s) for which to plot the convergence trace.

        - if an `OptimizeResult`, draw the corresponding single trace
        - if an iterable of `OptimizeResult`, draw all traces in the same
          plot as well as the average convergence trace
        - if a tuple, the label names the trace(s) and the behavior is as
          specified above.

    true_minimum : float, optional
        The true minimum value of the function, if known.

    yscale : None or string, optional
        The scale for the y-axis.

    Returns
    -------
    ax : `Axes`
        The matplotlib axes the plot was drawn in
    """

    if ax is None:
        ax = plt.gca()

    ax.set_title("Convergence plot")
    ax.set_xlabel("Number of calls $n$")
    ax.set_ylabel(r"$\min f(x)$ after $n$ calls")
    ax.grid()

    if yscale is not None:
        ax.set_yscale(yscale)

    colors = cm.viridis(np.linspace(0.25, 1.0, len(args)))

    for index, (arg, color) in enumerate(zip(args, colors)):
        if isinstance(arg, tuple):
            label, arg = arg
        else:
            label = None

        if isinstance(arg, OptimizeResult):
            opt_res = arg
            n_calls = len(opt_res.x_iters)
            mins = [np.min(opt_res.func_vals[: i + 1]) for i in range(n_calls)]
            ax.plot(
                range(1, n_calls + 1),
                mins,
                c=color,
                marker=".",
                markersize=12,
                lw=2,
                label=label,
            )

        elif isinstance(arg, Iterable) and all(
            isinstance(elem, OptimizeResult) for elem in arg
        ):
            mins = [
                [
                    np.min(opt_res.func_vals[: i + 1])
                    for i in range(len(opt_res.x_iters))
                ]
                for opt_res in arg
            ]

            # graciously handle "ragged" array, i.e. differing length arrays
            max_n_calls = max(len(m) for m in mins)
            mean_arr = np.empty((len(mins), max_n_calls))
            mean_arr[:] = np.nan

            for i, m in enumerate(mins):
                ax.plot(range(1, 1 + len(m)), m, c=color, alpha=0.2)
                mean_arr[i, : len(m)] = m

            if np.isnan(mean_arr).any():
                warnings.warn(
                    "Inconsistent number of function calls in "
                    f"argument at pos {index}"
                )

            ax.plot(
                range(1, 1 + max_n_calls),
                np.nanmean(mins, axis=0),
                c=color,
                marker=".",
                markersize=12,
                lw=2,
                label=label,
            )

        else:
            raise ValueError(
                "Cannot plot convergence trace for "
                f"{arg.__class__.__name__} object {arg}"
            )

    if true_minimum:
        ax.axhline(true_minimum, linestyle="--", color="r", lw=1, label="True minimum")

    if true_minimum or label:
        ax.legend(loc="best")

    return ax


def plot_gaussian_process(
    res,
    ax=None,
    n_calls=-1,
    objective=None,
    n_points=1000,
    noise_level=0,
    show_legend=True,
    show_title=True,
    show_acq_func=False,
    show_next_point=False,
    show_observations=True,
    show_mu=True,
):
    """Plots the optimization results and the gaussian process for 1-D objective
    functions.

    Parameters
    ----------
    res :  `OptimizeResult`
        The result for which to plot the gaussian process.

    ax : `Axes`, optional
        The matplotlib axes on which to draw the plot, or `None` to create
        a new one.

    n_calls : int, default: -1
        Can be used to evaluate the model at call `n_calls`.

    objective : func, default: None
        Defines the true objective function. Must have one input parameter.

    n_points : int, default: 1000
        Number of data points used to create the plots

    noise_level : float, default: 0
        Sets the estimated noise level

    show_legend : boolean, default: True
        When True, a legend is plotted.

    show_title : boolean, default: True
        When True, a title containing the found minimum value
        is shown

    show_acq_func : boolean, default: False
        When True, the acquisition function is plotted

    show_next_point : boolean, default: False
        When True, the next evaluated point is plotted

    show_observations : boolean, default: True
        When True, observations are plotted as dots.

    show_mu : boolean, default: True
        When True, the predicted model is shown.

    Returns
    -------
    ax : `Axes`
        The matplotlib axes.
    """

    if ax is None:
        ax = plt.gca()
    n_dims = res.space.n_dims
    assert n_dims == 1, "Space dimension must be 1"
    dimension = res.space.dimensions[0]
    x, x_model = _evenly_sample(dimension, n_points)
    x = x.reshape(-1, 1)
    x_model = x_model.reshape(-1, 1)
    if res.specs is not None and "args" in res.specs:
        n_random = res.specs["args"].get('n_random_starts', None)
        acq_func = res.specs["args"].get("acq_func", "EI")
        acq_func_kwargs = res.specs["args"].get("acq_func_kwargs", {})

    if acq_func_kwargs is None:
        acq_func_kwargs = {}
    if acq_func is None or acq_func == "gp_hedge":
        acq_func = "EI"
    if n_random is None:
        n_random = len(res.x_iters) - len(res.models)

    if objective is not None:
        fx = np.array([objective(x_i) for x_i in x])
    if n_calls < 0:
        model = res.models[-1]
        curr_x_iters = res.x_iters
        curr_func_vals = res.func_vals
    else:
        model = res.models[n_calls]

        curr_x_iters = res.x_iters[: n_random + n_calls]
        curr_func_vals = res.func_vals[: n_random + n_calls]

    # Plot true function.
    if objective is not None:
        ax.plot(x, fx, "r--", label="True (unknown)")
        ax.fill(
            np.concatenate([x, x[::-1]]),
            np.concatenate(
                (
                    [fx_i - 1.9600 * noise_level for fx_i in fx],
                    [fx_i + 1.9600 * noise_level for fx_i in fx[::-1]],
                )
            ),
            alpha=0.2,
            fc="r",
            ec="None",
        )

    # Plot GP(x) + contours
    if show_mu:
        per_second = acq_func.endswith("ps")
        if per_second:
            y_pred, sigma = model.estimators_[0].predict(x_model, return_std=True)
        else:
            y_pred, sigma = model.predict(x_model, return_std=True)
        ax.plot(x, y_pred, "g--", label=r"$\mu_{GP}(x)$")
        ax.fill(
            np.concatenate([x, x[::-1]]),
            np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]),
            alpha=0.2,
            fc="g",
            ec="None",
        )

    # Plot sampled points
    if show_observations:
        ax.plot(curr_x_iters, curr_func_vals, "r.", markersize=8, label="Observations")
    if (show_mu or show_observations or objective is not None) and show_acq_func:
        ax_ei = ax.twinx()
        ax_ei.set_ylabel(str(acq_func) + "(x)")
        plot_both = True
    else:
        ax_ei = ax
        plot_both = False
    if show_acq_func:
        acq = _gaussian_acquisition(
            x_model,
            model,
            y_opt=np.min(curr_func_vals),
            acq_func=acq_func,
            acq_func_kwargs=acq_func_kwargs,
        )
        next_x = x[np.argmin(acq)]
        next_acq = acq[np.argmin(acq)]
        acq = -acq
        next_acq = -next_acq
        ax_ei.plot(x, acq, "b", label=str(acq_func) + "(x)")
        if not plot_both:
            ax_ei.fill_between(x.ravel(), 0, acq.ravel(), alpha=0.3, color='blue')

        if show_next_point and next_x is not None:
            ax_ei.plot(next_x, next_acq, "bo", markersize=6, label="Next query point")

    if show_title:
        ax.set_title(fr"x* = {res.x[0]:.4f}, f(x*) = {res.fun:.4f}")
    # Adjust plot layout
    ax.grid()
    ax.set_xlabel("x")
    ax.set_ylabel("f(x)")
    if show_legend:
        if plot_both:
            lines, labels = ax.get_legend_handles_labels()
            lines2, labels2 = ax_ei.get_legend_handles_labels()
            ax_ei.legend(
                lines + lines2,
                labels + labels2,
                loc="best",
                prop={'size': 6},
                numpoints=1,
            )
        else:
            ax.legend(loc="best", prop={'size': 6}, numpoints=1)

    return ax


def plot_regret(*args, ax=None, true_minimum=None, yscale=None):
    """Plot one or several cumulative regret traces.

    Parameters
    ----------
    args[i] : `OptimizeResult`, list of `OptimizeResult`, or tuple
        The result(s) for which to plot the cumulative regret trace.

        - if `OptimizeResult`, then draw the corresponding single trace;
        - if list of `OptimizeResult`, then draw the corresponding cumulative
            regret traces in transparency, along with the average cumulative
            regret trace;
        - if tuple, then `args[i][0]` should be a string label and `args[i][1]`
          an `OptimizeResult` or a list of `OptimizeResult`.

    ax : Axes`, optional
        The matplotlib axes on which to draw the plot, or `None` to create
        a new one.

    true_minimum : float, optional
        The true minimum value of the function, if known.

    yscale : None or string, optional
        The scale for the y-axis.

    Returns
    -------
    ax : `Axes`
        The matplotlib axes.
    """

    if ax is None:
        ax = plt.gca()

    ax.set_title("Cumulative regret plot")
    ax.set_xlabel("Number of calls $n$")
    ax.set_ylabel(r"$\sum_{i=0}^n(f(x_i) - optimum)$ after $n$ calls")
    ax.grid()

    if yscale is not None:
        ax.set_yscale(yscale)

    colors = cm.viridis(np.linspace(0.25, 1.0, len(args)))

    if true_minimum is None:
        results = []
        for res in args:
            if isinstance(res, tuple):
                res = res[1]

            if isinstance(res, OptimizeResult):
                results.append(res)
            elif isinstance(res, list):
                results.extend(res)
        true_minimum = np.min([np.min(r.func_vals) for r in results])

    for results, color in zip(args, colors):
        if isinstance(results, tuple):
            name, results = results
        else:
            name = None

        if isinstance(results, OptimizeResult):
            n_calls = len(results.x_iters)
            regrets = [
                np.sum(results.func_vals[:i] - true_minimum)
                for i in range(1, n_calls + 1)
            ]
            ax.plot(
                range(1, n_calls + 1),
                regrets,
                c=color,
                marker=".",
                markersize=12,
                lw=2,
                label=name,
            )

        elif isinstance(results, list):
            n_calls = len(results[0].x_iters)
            iterations = range(1, n_calls + 1)
            regrets = [
                [np.sum(r.func_vals[:i] - true_minimum) for i in iterations]
                for r in results
            ]

            for cr in regrets:
                ax.plot(iterations, cr, c=color, alpha=0.2)

            ax.plot(
                iterations,
                np.mean(regrets, axis=0),
                c=color,
                marker=".",
                markersize=12,
                lw=2,
                label=name,
            )

    if name:
        ax.legend(loc="best")

    return ax


def _format_scatter_plot_axes(ax, space, ylabel, plot_dims, dim_labels=None):
    # Work out min, max of y axis for the diagonal so we can adjust
    # them all to the same value
    diagonal_ylim = _get_ylim_diagonal(ax)

    # Number of search-space dimensions we are using.
    if isinstance(ax, (list, np.ndarray)):
        n_dims = len(plot_dims)
    else:
        n_dims = 1

    if dim_labels is None:
        dim_labels = [
            "$X_{%i}$" % i if d.name is None else d.name for i, d in plot_dims
        ]
    # Axes for categorical dimensions are really integers; we have to
    # label them with the category names
    iscat = [isinstance(dim[1], Categorical) for dim in plot_dims]

    # Deal with formatting of the axes
    for i in range(n_dims):  # rows
        for j in range(n_dims):  # columns
            if isinstance(ax, np.ndarray):
                ax_ = ax[i, j]
            else:
                ax_ = ax
            index_i, dim_i = plot_dims[i]
            index_j, dim_j = plot_dims[j]
            if j > i:
                ax_.axis("off")
            elif i > j:  # off-diagonal plots
                # plots on the diagonal are special, like Texas. They have
                # their own range so do not mess with them.
                if not iscat[i]:  # bounds not meaningful for categoricals
                    ax_.set_ylim(*dim_i.bounds)
                if iscat[j]:
                    # partial() avoids creating closures in a loop
                    ax_.xaxis.set_major_formatter(
                        FuncFormatter(partial(_cat_format, dim_j))
                    )
                else:
                    ax_.set_xlim(*dim_j.bounds)
                if j == 0:  # only leftmost column (0) gets y labels
                    ax_.set_ylabel(dim_labels[i])
                    if iscat[i]:  # Set category labels for left column
                        ax_.yaxis.set_major_formatter(
                            FuncFormatter(partial(_cat_format, dim_i))
                        )
                else:
                    ax_.set_yticklabels([])

                # for all rows except ...
                if i < n_dims - 1:
                    ax_.set_xticklabels([])
                # ... the bottom row
                else:
                    [label.set_rotation(45) for label in ax_.get_xticklabels()]
                    ax_.set_xlabel(dim_labels[j])

                # configure plot for linear vs log-scale
                if dim_j.prior == 'log-uniform':
                    ax_.set_xscale('log')
                else:
                    ax_.xaxis.set_major_locator(
                        MaxNLocator(6, prune='both', integer=iscat[j])
                    )

                if dim_i.prior == 'log-uniform':
                    ax_.set_yscale('log')
                else:
                    ax_.yaxis.set_major_locator(
                        MaxNLocator(6, prune='both', integer=iscat[i])
                    )

            else:  # diagonal plots
                ax_.set_ylim(*diagonal_ylim)
                if not iscat[i]:
                    low, high = dim_i.bounds
                    ax_.set_xlim(low, high)
                ax_.yaxis.tick_right()
                ax_.yaxis.set_label_position('right')
                ax_.yaxis.set_ticks_position('both')
                ax_.set_ylabel(ylabel)

                ax_.xaxis.tick_top()
                ax_.xaxis.set_label_position('top')
                ax_.set_xlabel(dim_labels[j])

                if dim_i.prior == 'log-uniform':
                    ax_.set_xscale('log')
                else:
                    ax_.xaxis.set_major_locator(
                        MaxNLocator(6, prune='both', integer=iscat[i])
                    )
                    if iscat[i]:
                        ax_.xaxis.set_major_formatter(
                            FuncFormatter(partial(_cat_format, dim_i))
                        )

    return ax


def _make_subgrid(ax, n_rows, n_cols=None, fig_kwargs_=None, **gridspec_kwargs):
    """Makes a subgrid inside an existing axis object."""
    if n_cols is None:
        n_cols = n_rows
    fig_kwargs_ = fig_kwargs_ or {}
    if ax is None:
        fig, ax = plt.subplots(**fig_kwargs_)
    else:
        fig = ax.get_figure()

    grid_spec = gridspec.GridSpecFromSubplotSpec(
        n_rows, n_cols, subplot_spec=ax.get_subplotspec(), **gridspec_kwargs  # noqa
    )
    axes = np.empty((n_rows, n_cols), dtype=object)
    for i in range(n_rows):
        for j in range(n_cols):
            axes[i, j] = fig.add_subplot(grid_spec[i, j])
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    for spine in ax.spines.values():
        spine.set_visible(False)
    return ax, axes


def partial_dependence(
    space, model, i, j=None, sample_points=None, n_samples=250, n_points=40, x_eval=None
):
    """Calculate the partial dependence for dimensions `i` and `j` with respect to the
    objective value, as approximated by `model`.

    The partial dependence plot shows how the value of the dimensions
    `i` and `j` influence the `model` predictions after "averaging out"
    the influence of all other dimensions.

    When `x_eval` is not `None`, the given values are used instead of
    random samples. In this case, `n_samples` will be ignored.

    Parameters
    ----------
    space : `Space`
        The parameter space over which the minimization was performed.

    model
        Surrogate model for the objective function.

    i : int
        The first dimension for which to calculate the partial dependence.

    j : int, default=None
        The second dimension for which to calculate the partial dependence.
        To calculate the 1D partial dependence on `i` alone set `j=None`.

    sample_points : np.array, shape=(n_points, n_dims), default=None
        Only used when `x_eval=None`, i.e in case partial dependence should
        be calculated.
        Randomly sampled and transformed points to use when averaging
        the model function at each of the `n_points` when using partial
        dependence.

    n_samples : int, default=100
        Number of random samples to use for averaging the model function
        at each of the `n_points` when using partial dependence. Only used
        when `sample_points=None` and `x_eval=None`.

    n_points : int, default=40
        Number of points at which to evaluate the partial dependence
        along each dimension `i` and `j`.

    x_eval : list, default=None
        `x_eval` is a list of parameter values or None. In case `x_eval`
        is not None, the parsed dependence will be calculated using these
        values.
        Otherwise, random selected samples will be used.

    Returns
    -------
    For 1D partial dependence:

    xi : np.array
        The points at which the partial dependence was evaluated.

    yi : np.array
        The value of the model at each point `xi`.

    For 2D partial dependence:

    xi : np.array, shape=n_points
        The points at which the partial dependence was evaluated.
    yi : np.array, shape=n_points
        The points at which the partial dependence was evaluated.
    zi : np.array, shape=(n_points, n_points)
        The value of the model at each point `(xi, yi)`.

    For Categorical variables, the `xi` (and `yi` for 2D) returned are
    the indices of the variable in `Dimension.categories`.
    """
    # If we haven't parsed an x_eval list we use random sampled values instead
    if x_eval is None and sample_points is None:
        sample_points = space.transform(space.rvs(n_samples=n_samples))
    elif sample_points is None:
        sample_points = space.transform([x_eval])

    if j is None:
        return partial_dependence_1D(space, model, i, sample_points, n_points)
    else:
        return partial_dependence_2D(space, model, i, j, sample_points, n_points)


def plot_objective(
    result,
    levels=10,
    n_points=40,
    n_samples=250,
    size=2,
    wspace=0.35,
    hspace=0.35,
    zscale='linear',
    dimensions=None,
    sample_source='random',
    minimum='result',
    n_minimum_search=None,
    plot_dims=None,
    show_points=True,
    cmap='viridis_r',
    ax=None,
):
    """Plot a 2-d matrix with so-called Partial Dependence plots of the objective
    function. This shows the influence of each search-space dimension on the objective
    function.

    This uses the last fitted model for estimating the objective function.

    The diagonal shows the effect of a single dimension on the
    objective function, while the plots below the diagonal show
    the effect on the objective function when varying two dimensions.

    The Partial Dependence is calculated by averaging the objective value
    for a number of random samples in the search-space,
    while keeping one or two dimensions fixed at regular intervals. This
    averages out the effect of varying the other dimensions and shows
    the influence of one or two dimensions on the objective function.

    Also shown are small black dots for the points that were sampled
    during optimization.

    A red star indicates per default the best observed minimum, but
    this can be changed by changing argument ´minimum´.

    .. note::
          The Partial Dependence plot is only an estimation of the surrogate
          model which in turn is only an estimation of the true objective
          function that has been optimized. This means the plots show
          an "estimate of an estimate" and may therefore be quite imprecise,
          especially if few samples have been collected during the
          optimization
          (e.g. less than 100-200 samples), and in regions of the search-space
          that have been sparsely sampled (e.g. regions away from the optimum).
          This means that the plots may change each time you run the
          optimization and they should not be considered completely reliable.
          These compromises are necessary because we cannot evaluate the
          expensive objective function in order to plot it, so we have to use
          the cheaper surrogate model to plot its contour. And in order to
          show search-spaces with 3 dimensions or more in a 2-dimensional
          plot,
          we further need to map those dimensions to only 2-dimensions using
          the Partial Dependence, which also causes distortions in the plots.

    Parameters
    ----------
    result : `OptimizeResult`
        The optimization results from calling e.g. `gp_minimize()`.

    levels : int, default=10
        Number of levels to draw on the contour plot, passed directly
        to `plt.contourf()`.

    n_points : int, default=40
        Number of points at which to evaluate the partial dependence
        along each dimension.

    n_samples : int, default=250
        Number of samples to use for averaging the model function
        at each of the `n_points` when `sample_method` is set to 'random'.

    size : float, default=2
        Height (in inches) of each facet. Ignored if ``ax`` is provided.

    wspace : float, default=0.35
        The width of the padding between subplots, as a fraction of the
        average Axes width. Ignored if ``ax`` is provided.

    hspace : float, default=0.35
       The height of the padding between subplots, as a fraction of the
       average Axes height. Ignored if ``ax`` is provided.

    zscale : str, default='linear'
        Scale to use for the z axis of the contour plots. Either 'linear'
        or 'log'.

    dimensions : list of str, default=None
        Labels of the dimension
        variables. `None` defaults to `space.dimensions[i].name`, or
        if also `None` to `['X_0', 'X_1', ..]`.

    plot_dims : list of str and int, default=None
        List of dimension names or dimension indices from the
        search-space dimensions to be included in the plot.
        If `None` then use all dimensions except constant ones
        from the search-space.

    sample_source : str or list of floats, default='random'
        Defines to samples generation to use for averaging the model function
        at each of the `n_points`.

        A partial dependence plot is only generated, when `sample_source`
        is set to 'random' and `n_samples` is sufficient.

        `sample_source` can also be a list of
        floats, which is then used for averaging.

        Valid strings:

        - 'random' - `n_samples` random samples will used
        - 'result' - Use only the best observed parameters
        - 'expected_minimum' - Parameters that gives the best
          minimum Calculated using scipy's minimize method.
          This method currently does not work with categorical values.
        - 'expected_minimum_random' - Parameters that gives the
          best minimum when using naive random sampling.
          Works with categorical values.

    minimum : str or list of floats, default = 'result'
        Defines the values for the red points in the plots.
        Valid strings:

        - 'result' - Use best observed parameters
        - 'expected_minimum' - Parameters that gives the best
          minimum Calculated using scipy's minimize method.
          This method currently does not work with categorical values.
        - 'expected_minimum_random' - Parameters that gives the
          best minimum when using naive random sampling.
          Works with categorical values

    n_minimum_search : int, default = None
        Determines how many points should be evaluated
        to find the minimum when using 'expected_minimum' or
        'expected_minimum_random'. Parameter is used when
        `sample_source` and/or `minimum` is set to
        'expected_minimum' or 'expected_minimum_random'.

    show_points: bool, default = True
        Choose whether to show evaluated points in the
        contour plots.

    cmap: str or Colormap, default = 'viridis_r'
        Color map for contour plots. Passed directly to
        `plt.contourf()`

    ax: `Matplotlib.Axes`, default= None
        An axis object in which to plot the dependence plot. If provided,
        ``size`` is ignored and the caller is responsible for the size of the
        plot.

    Returns
    -------
    ax : `Matplotlib.Axes`
        The axes object the plot was drawn in
    """
    # Here we define the values for which to plot the red dot (2d plot) and
    # the red dotted line (1d plot).
    # These same values will be used for evaluating the plots when
    # calculating dependence. (Unless partial
    # dependence is to be used instead).
    space = result.space
    # Get the relevant search-space dimensions.
    if plot_dims is None:
        # Get all dimensions.
        plot_dims = []
        for row in range(space.n_dims):
            if space.dimensions[row].is_constant:
                continue
            plot_dims.append((row, space.dimensions[row]))
    else:
        plot_dims = space[plot_dims]
    # Number of search-space dimensions we are using.
    n_dims = len(plot_dims)
    if dimensions is not None:
        assert len(dimensions) == n_dims
    x_vals = _evaluate_min_params(result, minimum, n_minimum_search)
    if sample_source == "random":
        x_eval = None
        samples = space.transform(space.rvs(n_samples=n_samples))
    else:
        x_eval = _evaluate_min_params(result, sample_source, n_minimum_search)
        samples = space.transform([x_eval])
    x_samples, minimum, _ = _map_categories(space, result.x_iters, x_vals)

    if zscale == 'log':
        locator = LogLocator()
    elif zscale == 'linear':
        locator = None
    else:
        raise ValueError(
            "Valid values for zscale are 'linear' and 'log'," " not '%s'." % zscale
        )

    fig_kwargs = dict(figsize=(size * n_dims, size * n_dims))
    ax, axes = _make_subgrid(
        ax, n_dims, fig_kwargs_=fig_kwargs, wspace=wspace, hspace=hspace
    )

    for i in range(n_dims):
        for j in range(n_dims):
            if i == j:
                index, _ = plot_dims[i]
                xi, yi = partial_dependence_1D(
                    space, result.models[-1], index, samples=samples, n_points=n_points
                )
                ax_ = axes[i, j]
                ax_.plot(xi, yi)
                ax_.axvline(minimum[index], linestyle="--", color="r", lw=1)

            # lower triangle
            elif i > j:
                index1, _ = plot_dims[i]
                index2, _ = plot_dims[j]
                xi, yi, zi = partial_dependence_2D(
                    space, result.models[-1], index1, index2, samples, n_points
                )
                ax_ = axes[i, j]
                ax_.contourf(xi, yi, zi, levels, locator=locator, cmap=cmap)
                if show_points:
                    ax_.scatter(
                        x_samples[:, index2], x_samples[:, index1], c='k', s=10, lw=0.0
                    )
                ax_.scatter(
                    minimum[index2], minimum[index1], c=['r'], s=100, lw=0.0, marker='*'
                )
    ylabel = "Partial dependence"

    # Make various adjustments to the plots.
    _format_scatter_plot_axes(
        axes, space, ylabel=ylabel, plot_dims=plot_dims, dim_labels=dimensions
    )
    return ax


def plot_evaluations(
    result,
    bins=20,
    dimensions=None,
    plot_dims=None,
    size=2,
    wspace=0.35,
    hspace=0.35,
    cmap="viridis",
    ax=None,
):
    """Visualize the order in which points were sampled during optimization.

    This creates a 2-d matrix plot where the diagonal plots are histograms
    that show the distribution of samples for each search-space dimension.

    The plots below the diagonal are scatter-plots of the samples for
    all combinations of search-space dimensions.

    The order in which samples
    were evaluated is encoded in each point's color.

    A red star shows the best found parameters.

    Parameters
    ----------
    result : `OptimizeResult`
        The optimization results from calling e.g. `gp_minimize()`.

    bins : int, bins=20
        Number of bins to use for histograms on the diagonal.

    dimensions : list of str, default=None
        Labels of the dimension
        variables. `None` defaults to `space.dimensions[i].name`, or
        if also `None` to `['X_0', 'X_1', ..]`.

    plot_dims : list of str and int, default=None
        List of dimension names or dimension indices from the
        search-space dimensions to be included in the plot.
        If `None` then use all dimensions except constant ones
        from the search-space.

    size : float, default=2
        Height (in inches) of each facet.

    wspace : float, default=0.35
        The width of the padding between subplots, as a fraction of the
        average Axes width. Ignored if ``ax`` is provided.

    hspace : float, default=0.35
       The height of the padding between subplots, as a fraction of the
       average Axes height. Ignored if ``ax`` is provided.

    size : float, default=2
        Height (in inches) of each facet.

    cmap: str or Colormap, default = 'viridis'
        Color map for scatter plots. Passed directly to
        `plt.scatter()`

    ax: `Matplotlib.Axes`, default= None
        An axis object in which to plot the dependence plot.

    Returns
    -------
    ax : `Matplotlib.Axes`
        Matplotlib axis the plto was drawn in
    """
    space = result.space
    # Convert categoricals to integers, so we can ensure consistent ordering.
    # Assign indices to categories in the order they appear in the Dimension.
    # Matplotlib's categorical plotting functions are only present in v 2.1+,
    # and may order categoricals differently in different plots anyway.
    samples, minimum, iscat = _map_categories(space, result.x_iters, result.x)
    order = range(samples.shape[0])

    if plot_dims is None:
        # Get all dimensions.
        plot_dims = []
        for row in range(space.n_dims):
            if space.dimensions[row].is_constant:
                continue
            plot_dims.append((row, space.dimensions[row]))
    else:
        plot_dims = space[plot_dims]
    # Number of search-space dimensions we are using.
    n_dims = len(plot_dims)
    if dimensions is not None:
        assert len(dimensions) == n_dims

    fig_kwargs = dict(figsize=(size * n_dims, size * n_dims))
    ax, axes = _make_subgrid(
        ax, n_dims, fig_kwargs_=fig_kwargs, wspace=wspace, hspace=hspace
    )

    for i in range(n_dims):
        for j in range(n_dims):
            if i == j:
                index, dim = plot_dims[i]
                if iscat[index]:
                    bins_ = len(dim.categories)
                elif dim.prior == 'log-uniform':
                    low, high = space.bounds[index]
                    bins_ = np.logspace(np.log10(low), np.log10(high), bins)
                else:
                    bins_ = bins
                if n_dims == 1:
                    ax_ = axes
                else:
                    ax_ = axes[i, i]
                ax_.hist(
                    samples[:, index],
                    bins=bins_,
                    range=None if iscat[index] else dim.bounds,
                )

            # lower triangle
            elif i > j:
                index_i, dim_i = plot_dims[i]
                index_j, dim_j = plot_dims[j]
                ax_ = axes[i, j]
                ax_.scatter(
                    samples[:, index_j],
                    samples[:, index_i],
                    c=order,
                    s=40,
                    lw=0.0,
                    cmap=cmap,
                )
                ax_.scatter(
                    minimum[index_j],
                    minimum[index_i],
                    c=['r'],
                    s=100,
                    lw=0.0,
                    marker='*',
                )

    # Make various adjustments to the plots.
    _format_scatter_plot_axes(
        axes,
        space,
        ylabel="Number of samples",
        plot_dims=plot_dims,
        dim_labels=dimensions,
    )
    return ax


def _get_ylim_diagonal(ax):
    """Get the min / max of the ylim for all diagonal plots. This is used in
    _adjust_fig() so the ylim is the same for all diagonal plots.

    Parameters
    ----------
    ax : `Matplotlib.Axes`
        2-dimensional matrix with Matplotlib Axes objects.

    Returns
    -------
    ylim_diagonal : tuple(int)
        The common min and max ylim for the diagonal plots.
    """

    # Number of search-space dimensions used in this plot.
    if isinstance(ax, (list, np.ndarray)):
        n_dims = len(ax)
        # Get ylim for all diagonal plots.
        ylim = [ax[row, row].get_ylim() for row in range(n_dims)]
    else:
        ylim = [ax.get_ylim()]

    # Separate into two lists with low and high ylim.
    ylim_lo, ylim_hi = zip(*ylim)

    # Min and max ylim for all diagonal plots.
    ylim_min = np.min(ylim_lo)
    ylim_max = np.max(ylim_hi)

    return ylim_min, ylim_max


def partial_dependence_1D(space, model, i, samples, n_points=40):
    """Calculate the partial dependence for a single dimension.

    This uses the given model to calculate the average objective value
    for all the samples, where the given dimension is fixed at
    regular intervals between its bounds.

    This shows how the given dimension affects the objective value
    when the influence of all other dimensions are averaged out.

    Parameters
    ----------
    space : `Space`
        The parameter space over which the minimization was performed.

    model
        Surrogate model for the objective function.

    i : int
        The dimension for which to calculate the partial dependence.

    samples : np.array, shape=(n_points, n_dims)
        Randomly sampled and transformed points to use when averaging
        the model function at each of the `n_points` when using partial
        dependence.

    n_points : int, default=40
        Number of points at which to evaluate the partial dependence
        along each dimension `i`.

    Returns
    -------
    xi : np.array
        The points at which the partial dependence was evaluated.

    yi : np.array
        The average value of the modelled objective function at
        each point `xi`.
    """
    # The idea is to step through one dimension, evaluating the model with
    # that dimension fixed and averaging either over random values or over
    # the given ones in x_val in all other dimensions.
    # (Or step through 2 dimensions when i and j are given.)
    # Categorical dimensions make this interesting, because they are one-
    # hot-encoded, so there is a one-to-many mapping of input dimensions
    # to transformed (model) dimensions.

    # dim_locs[i] is the (column index of the) start of dim i in
    # sample_points.
    # This is usefull when we are using one hot encoding, i.e using
    # categorical values
    dim_locs = np.cumsum([0] + [d.transformed_size for d in space.dimensions])

    def _calc(x):
        """Helper-function to calculate the average predicted objective value for the
        given model, when setting the index'th dimension of the search-space to the
        value x, and then averaging over all samples."""
        rvs_ = np.array(samples)  # copy
        # We replace the values in the dimension that we want to keep
        # fixed
        rvs_[:, dim_locs[i] : dim_locs[i + 1]] = x
        # In case of `x_eval=None` rvs conists of random samples.
        # Calculating the mean of these samples is how partial dependence
        # is implemented.
        return np.mean(model.predict(rvs_))

    xi, xi_transformed = _evenly_sample(space.dimensions[i], n_points)
    # Calculate the partial dependence for all the points.
    yi = [_calc(x) for x in xi_transformed]

    return xi, yi


def partial_dependence_2D(space, model, i, j, samples, n_points=40):
    """Calculate the partial dependence for two dimensions in the search-space.

    This uses the given model to calculate the average objective value
    for all the samples, where the given dimensions are fixed at
    regular intervals between their bounds.

    This shows how the given dimensions affect the objective value
    when the influence of all other dimensions are averaged out.

    Parameters
    ----------
    space : `Space`
        The parameter space over which the minimization was performed.

    model
        Surrogate model for the objective function.

    i : int
        The first dimension for which to calculate the partial dependence.

    j : int
        The second dimension for which to calculate the partial dependence.

    samples : np.array, shape=(n_points, n_dims)
        Randomly sampled and transformed points to use when averaging
        the model function at each of the `n_points` when using partial
        dependence.

    n_points : int, default=40
        Number of points at which to evaluate the partial dependence
        along each dimension `i` and `j`.

    Returns
    -------
    xi : np.array, shape=n_points
        The points at which the partial dependence was evaluated.

    yi : np.array, shape=n_points
        The points at which the partial dependence was evaluated.

    zi : np.array, shape=(n_points, n_points)
        The average value of the objective function at each point `(xi, yi)`.
    """
    # The idea is to step through one dimension, evaluating the model with
    # that dimension fixed and averaging either over random values or over
    # the given ones in x_val in all other dimensions.
    # (Or step through 2 dimensions when i and j are given.)
    # Categorical dimensions make this interesting, because they are one-
    # hot-encoded, so there is a one-to-many mapping of input dimensions
    # to transformed (model) dimensions.

    # dim_locs[i] is the (column index of the) start of dim i in
    # sample_points.
    # This is usefull when we are using one hot encoding, i.e using
    # categorical values
    dim_locs = np.cumsum([0] + [d.transformed_size for d in space.dimensions])

    def _calc(x, y):
        """Helper-function to calculate the average predicted objective value for the
        given model, when setting the index1'th dimension of the search-space to the
        value x and setting the index2'th dimension to the value y, and then averaging
        over all samples."""
        rvs_ = np.array(samples)  # copy
        rvs_[:, dim_locs[j] : dim_locs[j + 1]] = x
        rvs_[:, dim_locs[i] : dim_locs[i + 1]] = y
        return np.mean(model.predict(rvs_))

    xi, xi_transformed = _evenly_sample(space.dimensions[j], n_points)
    yi, yi_transformed = _evenly_sample(space.dimensions[i], n_points)
    # Calculate the partial dependence for all combinations of these points.
    zi = [[_calc(x, y) for x in xi_transformed] for y in yi_transformed]

    # Convert list-of-list to a numpy array.
    zi = np.array(zi)

    return xi, yi, zi


def plot_objective_2D(
    result,
    dimension_identifier1,
    dimension_identifier2,
    n_points=40,
    n_samples=250,
    levels=10,
    zscale='linear',
    sample_source='random',
    minimum='result',
    n_minimum_search=None,
    ax=None,
):
    """Create and return a Matplotlib figure and axes with a landscape contour-plot of
    the last fitted model of the search-space, overlaid with all the samples from the
    optimization results, for the two given dimensions of the search-space.

    This is similar to `plot_objective()` but only for 2 dimensions
    whose doc-string also has a more extensive explanation.

    Parameters
    ----------
    result : `OptimizeResult`
        The optimization results e.g. from calling `gp_minimize()`.

    dimension_identifier1 : str or int
        Name or index of a dimension in the search-space.

    dimension_identifier2 : str or int
        Name or index of a dimension in the search-space.

    n_samples : int, default=250
        Number of random samples used for estimating the contour-plot
        of the objective function.

    n_points : int, default=40
        Number of points along each dimension where the partial dependence
        is evaluated when generating the contour-plots.

    levels : int, default=10
        Number of levels to draw on the contour plot.

    zscale : str, default='linear'
        Scale to use for the z axis of the contour plots.
        Either 'log' or linear for all other choices.

    ax : `Matplotlib.Axes`, default: None
        When set, everything is plotted inside this axis.

    Returns
    -------
    ax : `Matplotlib.Axes`
        The Matplotlib Figure-object.
        For example, you can save the plot by calling
        `fig.savefig('file.png')`
    """

    # Get the search-space instance from the optimization results.
    space = result.space
    x_vals = _evaluate_min_params(result, minimum, n_minimum_search)
    if sample_source == "random":
        x_eval = None
        samples = space.transform(space.rvs(n_samples=n_samples))
    else:
        x_eval = _evaluate_min_params(result, sample_source, n_minimum_search)
        samples = space.transform([x_eval])
    x_samples, x_minimum, _ = _map_categories(space, result.x_iters, x_vals)
    # Get the dimension-object, its index in the search-space, and its name.
    index1, dimension1 = space[dimension_identifier1]
    index2, dimension2 = space[dimension_identifier2]

    # Get the samples from the optimization-log for the relevant dimensions.
    # samples1 = get_samples_dimension(result=result, index=index1)
    samples1 = x_samples[:, index1]
    samples2 = x_samples[:, index2]
    # samples2 = get_samples_dimension(result=result, index=index2)

    # Get the best-found samples for the relevant dimensions.
    best_sample1 = x_minimum[index1]
    best_sample2 = x_minimum[index2]

    # Get the last fitted model for the search-space.
    last_model = result.models[-1]

    # Estimate the objective function for these sampled points
    # using the last fitted model for the search-space.
    xi, yi, zi = partial_dependence_2D(
        space, last_model, index2, index1, samples, n_points=n_points
    )

    if ax is None:
        ax = plt.gca()

    # Scale for the z-axis of the contour-plot. Either Log or Linear (None).
    locator = LogLocator() if zscale == 'log' else None

    # Plot the contour-landscape for the objective function.
    ax.contourf(xi, yi, zi, levels, locator=locator, cmap='viridis_r')

    # Plot all the parameters that were sampled during optimization.
    # These are plotted as small black dots.
    ax.scatter(samples1, samples2, c='black', s=10, linewidths=1)

    # Plot the best parameters that were sampled during optimization.
    # These are plotted as a big red star.
    ax.scatter(best_sample1, best_sample2, c='red', s=50, linewidths=1, marker='*')

    # Use the dimension-names as the labels for the plot-axes.
    ax.set_xlabel(dimension1.name)
    ax.set_ylabel(dimension2.name)
    ax.autoscale(enable=True, axis='x', tight=True)
    ax.autoscale(enable=True, axis='y', tight=True)
    # Use log-scale on the x-axis?
    if dimension1.prior == 'log-uniform':
        ax.set_xscale('log')

    # Use log-scale on the y-axis?
    if dimension2.prior == 'log-uniform':
        ax.set_yscale('log')
    return ax


def plot_histogram(result, dimension_identifier, bins=20, rotate_labels=0, ax=None):
    """Create and return a Matplotlib figure with a histogram of the samples from the
    optimization results, for a given dimension of the search-space.

    Parameters
    ----------
    result : `OptimizeResult`
        The optimization results e.g. from calling `gp_minimize()`.

    dimension_identifier : str or int
        Name or index of a dimension in the search-space.

    bins : int, bins=20
        Number of bins in the histogram.

    rotate_labels : int, rotate_labels=0
        Degree to rotate category-names on the x-axis.
        Only used for Categorical dimensions.

    Returns
    -------
    ax : `Matplotlib.Axes`
        The Matplotlib Axes-object.
    """

    # Get the search-space instance from the optimization results.
    space = result.space

    # Get the dimension-object.
    index, dimension = space[dimension_identifier]

    # Get the samples from the optimization-log for that particular dimension.
    samples = [x[index] for x in result.x_iters]

    if ax is None:
        ax = plt.gca()

    if isinstance(dimension, Categorical):
        # When the search-space dimension is Categorical, it means
        # that the possible values are strings. Matplotlib's histogram
        # does not support this, so we have to make a bar-plot instead.

        # NOTE: This only shows the categories that are in the samples.
        # So if a category was not sampled, it will not be shown here.

        # Count the number of occurrences of the string-categories.
        counter = Counter(samples)

        # The counter returns a dict where the keys are the category-names
        # and the values are the number of occurrences for each category.
        names = list(counter.keys())
        counts = list(counter.values())

        # Although Matplotlib's docs indicate that the bar() function
        # can take a list of strings for the x-axis, it doesn't appear to work.
        # So we hack it by creating a list of integers and setting the
        # tick-labels with the category-names instead.
        x = np.arange(len(counts))

        # Plot using bars.
        ax.bar(x, counts, tick_label=names)

        # Adjust the rotation of the category-names on the x-axis.
        ax.set_xticklabels(labels=names, rotation=rotate_labels)
    else:
        # Otherwise the search-space Dimension is either integer or float,
        # in which case the histogram can be plotted more easily.
        if dimension.prior == 'log-uniform':
            # Map the number of bins to a log-space for the dimension bounds.
            bins_mapped = np.logspace(*np.log10(dimension.bounds), bins)
        else:
            # Use the original number of bins.
            bins_mapped = bins
        # Plot the histogram.
        ax.hist(samples, bins=bins_mapped, range=dimension.bounds)

        # Use log-scale on the x-axis?
        if dimension.prior == 'log-uniform':
            ax.set_xscale('log')

    # Set the labels.
    ax.set_xlabel(dimension.name)
    ax.set_ylabel('Sample Count')

    return ax


def _map_categories(space, points, minimum):
    """Map categorical values to integers in a set of points.

    Returns
    -------
    mapped_points : np.array, shape=points.shape
        A copy of `points` with categoricals replaced with their indices in
        the corresponding `Dimension`.

    mapped_minimum : np.array, shape (space.n_dims,)
        A copy of `minimum` with categoricals replaced with their indices in
        the corresponding `Dimension`.

    iscat : np.array, shape (space.n_dims,)
       Boolean array indicating whether dimension `i` in the `space` is
       categorical.
    """
    points = np.asarray(points, dtype=object)  # Allow slicing, preserve cats
    iscat = np.repeat(False, space.n_dims)
    min_ = np.zeros(space.n_dims)
    pts_ = np.zeros(points.shape)
    for i, dim in enumerate(space.dimensions):
        if isinstance(dim, Categorical):
            iscat[i] = True
            catmap = dict(zip(dim.categories, count()))
            pts_[:, i] = [catmap[cat] for cat in points[:, i]]
            min_[i] = catmap[minimum[i]]
        else:
            pts_[:, i] = points[:, i]
            min_[i] = minimum[i]
    return pts_, min_, iscat


def _evenly_sample(dim, n_points):
    """Return `n_points` evenly spaced points from a Dimension.

    Parameters
    ----------
    dim : `Dimension`
        The Dimension to sample from.  Can be categorical; evenly-spaced
        category indices are chosen in order without replacement (result
        may be smaller than `n_points`).

    n_points : int
        The number of points to sample from `dim`.

    Returns
    -------
    xi : np.array
        The sampled points in the Dimension.  For Categorical
        dimensions, returns the index of the value in
        `dim.categories`.

    xi_transformed : np.array
        The transformed values of `xi`, for feeding to a model.
    """
    cats = np.array(getattr(dim, 'categories', []), dtype=object)
    if len(cats):  # Sample categoricals while maintaining order
        xi = np.linspace(0, len(cats) - 1, min(len(cats), n_points), dtype=int)
        xi_transformed = dim.transform(cats[xi])
    else:
        bounds = dim.bounds
        # XXX use linspace(*bounds, n_points) after python2 support ends
        xi = np.linspace(bounds[0], bounds[1], n_points)
        xi_transformed = dim.transform(xi)
    return xi, xi_transformed


def _cat_format(dimension, x, _):
    """Categorical axis tick formatter function.

    Returns the name of category
    `x` in `dimension`.  Used with `matplotlib.ticker.FuncFormatter`.
    """
    if len(dimension.categories) > x:
        return str(dimension.categories[int(x)])
    else:
        return ''


def _evaluate_min_params(
    result, params='result', n_minimum_search=None, random_state=None
):
    """Returns the minimum based on `params`"""
    x_vals = None
    if isinstance(params, str):
        if params == 'result':
            # Using the best observed result
            x_vals = result.x
        elif params == 'expected_minimum':
            if result.space.is_partly_categorical:
                # space is also categorical
                raise ValueError(
                    'expected_minimum does not support any' 'categorical values'
                )
            # Do a gradient based minimum search using scipys own minimizer
            if n_minimum_search:
                # If a value for
                # expected_minimum_samples has been parsed
                x_vals, _ = expected_minimum(
                    result, n_random_starts=n_minimum_search, random_state=random_state
                )
            else:  # Use standard of 20 random starting points
                x_vals, _ = expected_minimum(
                    result, n_random_starts=20, random_state=random_state
                )
        elif params == 'expected_minimum_random':
            # Do a minimum search by evaluating the function with
            # n_samples sample values
            if n_minimum_search is not None:
                # If a value for
                # n_minimum_samples has been parsed
                x_vals, _ = expected_minimum_random_sampling(
                    result, n_random_starts=n_minimum_search, random_state=random_state
                )
            else:
                # Use standard of 10^n_parameters. Note this
                # becomes very slow for many parameters
                n_minimum_search = 10 ** len(result.x)
                x_vals, _ = expected_minimum_random_sampling(
                    result, n_random_starts=n_minimum_search, random_state=random_state
                )
        else:
            raise ValueError(
                'Argument ´eval_min_params´ must be a valid' 'string (´result´)'
            )
    elif isinstance(params, list):
        assert len(params) == len(result.x), (
            'Argument'
            '´eval_min_params´ of type list must have same length as'
            'number of features'
        )
        # Using defined x_values
        x_vals = params
    else:
        raise ValueError('Argument ´eval_min_params´ must' 'be a string or a list')
    return x_vals