1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
"""
Inspired by https://github.com/jonathf/chaospy/blob/master/chaospy/
distributions/sampler/sequences/grid.py
"""
import numpy as np
from sklearn.utils import check_random_state
from ..space import Space
from .base import InitialPointGenerator
def _quadrature_combine(args):
args = [np.asarray(arg).reshape(len(arg), -1) for arg in args]
shapes = [arg.shape for arg in args]
size = np.prod(shapes, 0)[0] * np.sum(shapes, 0)[1]
if size > 10**9:
raise MemoryError("Too large sets")
out = args[0]
for arg in args[1:]:
out = np.hstack(
[
np.tile(out, len(arg)).reshape(-1, out.shape[1]),
np.tile(arg.T, len(out)).reshape(arg.shape[1], -1).T,
]
)
return out
def _create_uniform_grid_exclude_border(n_dim, order):
assert order > 0
assert n_dim > 0
x_data = np.arange(1, order + 1) / (order + 1.0)
x_data = _quadrature_combine([x_data] * n_dim)
return x_data
def _create_uniform_grid_include_border(n_dim, order):
assert order > 1
assert n_dim > 0
x_data = np.arange(0, order) / (order - 1.0)
x_data = _quadrature_combine([x_data] * n_dim)
return x_data
def _create_uniform_grid_only_border(n_dim, order):
assert n_dim > 0
assert order > 1
x = [[0.0, 1.0]] * (n_dim - 1)
x.append(list(np.arange(0, order) / (order - 1.0)))
x_data = _quadrature_combine(x)
return x_data
class Grid(InitialPointGenerator):
"""Generate samples from a regular grid.
Parameters
----------
border : str, default='exclude'
defines how the samples are generated:
- 'include' : Includes the border into the grid layout
- 'exclude' : Excludes the border from the grid layout
- 'only' : Selects only points at the border of the dimension
use_full_layout : boolean, default=True
When True, a full factorial design is generated and
missing points are taken from the next larger full factorial
design, depending on `append_border`
When False, the next larger full factorial design is
generated and points are randomly selected from it.
append_border : str, default="only"
When use_full_layout is True, this parameter defines how the missing
points will be generated from the next larger grid layout:
- 'include' : Includes the border into the grid layout
- 'exclude' : Excludes the border from the grid layout
- 'only' : Selects only points at the border of the dimension
"""
def __init__(self, border="exclude", use_full_layout=True, append_border="only"):
self.border = border
self.use_full_layout = use_full_layout
self.append_border = append_border
def generate(self, dimensions, n_samples, random_state=None):
"""Creates samples from a regular grid.
Parameters
----------
dimensions : list, shape (n_dims,)
List of search space dimensions.
Each search dimension can be defined either as
- a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(lower_bound, upper_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
n_samples : int
The order of the Halton sequence. Defines the number of samples.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
Returns
-------
np.array, shape=(n_dim, n_samples)
grid set
"""
rng = check_random_state(random_state)
space = Space(dimensions)
n_dim = space.n_dims
transformer = space.get_transformer()
space.set_transformer("normalize")
if self.border == "include":
if self.use_full_layout:
order = int(np.floor(np.sqrt(n_samples)))
else:
order = int(np.ceil(np.sqrt(n_samples)))
if order < 2:
order = 2
h = _create_uniform_grid_include_border(n_dim, order)
elif self.border == "exclude":
if self.use_full_layout:
order = int(np.floor(np.sqrt(n_samples)))
else:
order = int(np.ceil(np.sqrt(n_samples)))
if order < 1:
order = 1
h = _create_uniform_grid_exclude_border(n_dim, order)
elif self.border == "only":
if self.use_full_layout:
order = int(np.floor(n_samples / 2.0))
else:
order = int(np.ceil(n_samples / 2.0))
if order < 2:
order = 2
h = _create_uniform_grid_only_border(n_dim, order)
else:
raise ValueError("Wrong value for border")
if np.size(h, 0) > n_samples:
rng.shuffle(h)
h = h[:n_samples, :]
elif np.size(h, 0) < n_samples:
if self.append_border == "only":
order = int(np.ceil((n_samples - np.size(h, 0)) / 2.0))
if order < 2:
order = 2
h2 = _create_uniform_grid_only_border(n_dim, order)
elif self.append_border == "include":
order = int(np.ceil(np.sqrt(n_samples - np.size(h, 0))))
if order < 2:
order = 2
h2 = _create_uniform_grid_include_border(n_dim, order)
elif self.append_border == "exclude":
order = int(np.ceil(np.sqrt(n_samples - np.size(h, 0))))
if order < 1:
order = 1
h2 = _create_uniform_grid_exclude_border(n_dim, order)
else:
raise ValueError("Wrong value for append_border")
h = np.vstack((h, h2[: (n_samples - np.size(h, 0))]))
rng.shuffle(h)
else:
rng.shuffle(h)
h = space.inverse_transform(h)
space.set_transformer(transformer)
return h
|