1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
r"""
==================================
Bayesian optimization with `skopt`
==================================
Gilles Louppe, Manoj Kumar July 2016.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Problem statement
-----------------
We are interested in solving
.. math::
x^* = arg \\min_x f(x)
under the constraints that
- :math:`f` is a black box for which no closed form is known
(nor its gradients);
- :math:`f` is expensive to evaluate;
- and evaluations of :math:`y = f(x)` may be noisy.
**Disclaimer.** If you do not have these constraints, then there
is certainly a better optimization algorithm than Bayesian optimization.
This example uses :class:`plots.plot_gaussian_process` which is available
since version 0.8.
Bayesian optimization loop
--------------------------
For :math:`t=1:T`:
1. Given observations :math:`(x_i, y_i=f(x_i))` for :math:`i=1:t`, build a
probabilistic model for the objective :math:`f`. Integrate out all
possible true functions, using Gaussian process regression.
2. optimize a cheap acquisition/utility function :math:`u` based on the
posterior distribution for sampling the next point.
:math:`x_{t+1} = arg \\min_x u(x)`
Exploit uncertainty to balance exploration against exploitation.
3. Sample the next observation :math:`y_{t+1}` at :math:`x_{t+1}`.
Acquisition functions
---------------------
Acquisition functions :math:`u(x)` specify which sample :math:`x`: should be
tried next:
- Expected improvement (default):
:math:`-EI(x) = -\\mathbb{E} [f(x) - f(x_t^+)]`
- Lower confidence bound: :math:`LCB(x) = \\mu_{GP}(x) + \\kappa \\sigma_{GP}(x)`
- Probability of improvement: :math:`-PI(x) = -P(f(x) \\geq f(x_t^+) + \\kappa)`
where :math:`x_t^+` is the best point observed so far.
In most cases, acquisition functions provide knobs (e.g., :math:`\\kappa`) for
controlling the exploration-exploitation trade-off.
- Search in regions where :math:`\\mu_{GP}(x)` is high (exploitation)
- Probe regions where uncertainty :math:`\\sigma_{GP}(x)` is high (exploration)
"""
print(__doc__)
import numpy as np
np.random.seed(237)
import matplotlib.pyplot as plt
from skopt.plots import plot_gaussian_process
#############################################################################
# Toy example
# -----------
#
# Let assume the following noisy function :math:`f`:
noise_level = 0.1
def f(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level
#############################################################################
# **Note.** In `skopt`, functions :math:`f` are assumed to take as input a 1D
# vector :math:`x`: represented as an array-like and to return a scalar
# :math:`f(x)`:.
# Plot f(x) + contours
x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = [f(x_i, noise_level=0.0) for x_i in x]
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(
np.concatenate([x, x[::-1]]),
np.concatenate(
(
[fx_i - 1.9600 * noise_level for fx_i in fx],
[fx_i + 1.9600 * noise_level for fx_i in fx[::-1]],
)
),
alpha=0.2,
fc="r",
ec="None",
)
plt.legend()
plt.grid()
plt.show()
#############################################################################
# Bayesian optimization based on gaussian process regression is implemented in
# :class:`gp_minimize` and can be carried out as follows:
from skopt import gp_minimize
res = gp_minimize(
f, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
acq_func="EI", # the acquisition function
n_calls=15, # the number of evaluations of f
n_random_starts=5, # the number of random initialization points
noise=0.1**2, # the noise level (optional)
random_state=1234,
) # the random seed
#############################################################################
# Accordingly, the approximated minimum is found to be:
f"x^*={res.x[0]:.4f}, f(x^*)={res.fun:.4f}"
#############################################################################
# For further inspection of the results, attributes of the `res` named tuple
# provide the following information:
#
# - `x` [float]: location of the minimum.
# - `fun` [float]: function value at the minimum.
# - `models`: surrogate models used for each iteration.
# - `x_iters` [array]:
# location of function evaluation for each iteration.
# - `func_vals` [array]: function value for each iteration.
# - `space` [Space]: the optimization space.
# - `specs` [dict]: parameters passed to the function.
print(res)
#############################################################################
# Together these attributes can be used to visually inspect the results of the
# minimization, such as the convergence trace or the acquisition function at
# the last iteration:
from skopt.plots import plot_convergence
plot_convergence(res)
#############################################################################
# Let us now visually examine
#
# 1. The approximation of the fit gp model to the original function.
# 2. The acquisition values that determine the next point to be queried.
plt.rcParams["figure.figsize"] = (8, 14)
def f_wo_noise(x):
return f(x, noise_level=0)
#############################################################################
# Plot the 5 iterations following the 5 random points
for n_iter in range(5):
# Plot true function.
plt.subplot(5, 2, 2 * n_iter + 1)
if n_iter == 0:
show_legend = True
else:
show_legend = False
ax = plot_gaussian_process(
res,
n_calls=n_iter,
objective=f_wo_noise,
noise_level=noise_level,
show_legend=show_legend,
show_title=False,
show_next_point=False,
show_acq_func=False,
)
ax.set_ylabel("")
ax.set_xlabel("")
# Plot EI(x)
plt.subplot(5, 2, 2 * n_iter + 2)
ax = plot_gaussian_process(
res,
n_calls=n_iter,
show_legend=show_legend,
show_title=False,
show_mu=False,
show_acq_func=True,
show_observations=False,
show_next_point=True,
)
ax.set_ylabel("")
ax.set_xlabel("")
plt.show()
#############################################################################
# The first column shows the following:
#
# 1. The true function.
# 2. The approximation to the original function by the gaussian process model
# 3. How sure the GP is about the function.
#
# The second column shows the acquisition function values after every
# surrogate model is fit. It is possible that we do not choose the global
# minimum but a local minimum depending on the minimizer used to minimize
# the acquisition function.
#
# At the points closer to the points previously evaluated at, the variance
# dips to zero.
#
# Finally, as we increase the number of points, the GP model approaches
# the actual function. The final few points are clustered around the minimum
# because the GP does not gain anything more by further exploration:
plt.rcParams["figure.figsize"] = (6, 4)
# Plot f(x) + contours
_ = plot_gaussian_process(res, objective=f_wo_noise, noise_level=noise_level)
plt.show()
|